Page 133

- $\sqrt{5}$ 2 1. a) b) $\sqrt{50}$ $\sqrt{45}$ c) d) $\sqrt{10}$ √29 e) f) $\sqrt{8}$ $\sqrt{13}$ 2. b) a) 3 c) 4 d)
- 3. ≈12.20 units

4. a)
$$d(0, M) = \sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2 + y^2}$$

b) 1. $\sqrt{13}$ 2. $\sqrt{5}$ 3. 5

5. 15 square units

6. a)
$$m\overline{AB} = \sqrt{50}$$
, $m\overline{AC} = 5$ and $m\overline{BC} = 5$ so triangle ABC is isosceles.
 $\left(m\overline{AC}\right)^2 + \left(m\overline{BC}\right)^2 = \left(m\overline{AB}\right)^2$
 $5^2 + 5^2 = \left(\sqrt{50}\right)^2$
 $25 + 25 = 50$ so triangle ABC is a right triangle.

b) Area = 12.5 square units

7. $d(\omega, A) = d(\omega, B) = d(\omega, C) = 5$ units. Since all three points are the same distance from the centre, they must all lie on the same circle whose radius is 5 units.