Evaluation 1

1. Expand the following expressions using the appropriate identity.

$$2x^4 + 12x^3 + 4x^2$$

c)
$$(3a^2 + 2b)(3a^2 - 2b)$$
 9

c) $(3a^2 + 2b)(3a^2 - 2b) - 9a^4 - 4b^2$ d) $(2x + 1)(2x - 1)(4x^2 + 1) - 16x^4 - 1$

- **2.** A rectangular base prism has the volume $V(x) = 4x^3 + 6x^2 16x 24$. The dimensions of the prism's base are (2x + 3) and (x - 2). Determine the height of this prism. 2x + 4
- 3. Factor the following polynomials.

a) $12a^3b^2 - 18a^2b^4$

 $6a^2b^2(2a - 3b^2)$

b)
$$(2x+3)(x-2)-(2x+3)(2x+1)$$

(2x+3)(-x-3)

c)
$$(2x+1)^2 + (2x+1)(x-5)$$

(2x+1)(3x-4)(2a + 3b)(3a - 2c)

d)
$$6a^2 - 4ac + 9ab - 6bc$$

 $(4x^2 + 5y)(4x^2 - 5y)$

4. Factor the following trinomials.

a) $x^2 + 2x - 15$ (x - 3)(x + 5) b) $2x^2 - x - 6$ (2x + 3)(x - 2)

$$(x-3)(x+5)$$

c)
$$9x^2 - 30xy + 25y^2$$
 (3x - 5y)² d) $4x^4 + 16x^3 + 16x^2$ $4x^2 (x + 2)^2$

e) $16x^4 - 25v^2$

Factor the following expressions.

a) $16x^2 - (2x - 1)^2$ (6x - 1)(2x + 1) b) $x^4 - 18x^2 + 81$ (x + 3)² · (x - 3)²

c)
$$x^4 - 81$$

c) $x^4 - 81$ ____ (x + 3)(x - 3)(x² + 9) d) $6x^3 - 4x^2 - 2x$ _ 2x(3x + 1)(x - 1)

6. Simplify the following rational expressions after indicating the restrictions on the variable.

a) $\frac{(x+1)^2 - 16}{x^2 + 8x + 15}$ $\frac{x-3}{x+3}$, $x \neq -5$ and $x \neq -3$ b) $\frac{2xy + 10x + 3y + 15}{y^2 - 25}$ $\frac{2x+3}{y-5}$, $y \neq -5$ and $y \neq 5$

() $\frac{4ab - 6a + 8b - 12}{4b - 6}$ a + 2, $b \neq \frac{3}{2}$

d)
$$\frac{2x^3 + 4x^2 - 6x}{3x^2 + 6x}$$

d) $\frac{2x^3 + 4x^2 - 6x}{2x^2 + 6x}$ $x - 1, x \neq 0; x \neq -3$

7. Perform the following operations given that variables satisfy the restrictions.

 $\frac{x}{x-3} + \frac{2x-6}{x^2-6x+9} = \frac{x+2}{x-3}$

b) $\frac{x^2 + 10x + 25}{2x^2 + 9x - 5} \times \frac{3}{3x + 15} = \frac{1}{2x - 1}$

c) $\frac{4x^2 - 12x + 9}{3x^2 - 5x} \div \frac{2x - 3}{3x - 5} = \frac{\frac{2x - 3}{x}}{\frac{x(y + 1)}{2}}$ d) $\frac{x^2}{2y - 2} \div \frac{x}{y^2 - 1} = \frac{\frac{x(y + 1)}{2}}{\frac{x}{2}}$

8. Solve the following equations.

- a) (2x-1)(x-3)=0 $S = \left\{\frac{1}{2}, 3\right\}$
- b) $x^2 = x$ S = (0, 1)
- c) $4x^2 9 = 0$ $S = \left[\frac{3}{2}, \frac{3}{2}\right]$
- d) $x^2 + 1 = 0$ ____
- e) $(x-3)^2-4=0$ S = {1, 5}
- f) $2(x-1)^2 8 = 0$ S = {3, -1}

9. Solve the following equations.

- a) $2x^2 9x 5 = 0$ _ $S = \left\{ -\frac{1}{2}, 5 \right\}$
- b) $4x^2 12x + 9 = 0$ $S = {\frac{3}{2}}$
- c) $x^2 2x + 3 = 0$ **S** = \emptyset
- d) (x+1)(x+2)=6 S = {-4, 1}
- e) $(2x+3)^2 = (x-2)^2$ S = $\left[\frac{1}{3}, -5\right]$
- f) $2x^3 + 6x^2 + 4x = 0$ S = $\{0, -1, -2\}$

10. The square and the rectangle on the right have the same area. Determine the perimeter of the rectangle.

x+5

 $(x + 1)^2 = (x - 1)(x + 5)$

 $x = 3 \Rightarrow$ Perimeter of the rectangle = 20 units

11. Solve the following inequalities.

- a) $x^2 \ge x$ _______]-\infty, 0] \cup [1, +\infty[______ b) $x^2 \ge 9$ _______]-\infty, -3] \cup [3, +\infty[
- c) $x^2 + 3x 4 \ge 0$ <u>J- ∞ , -4J \cup [1, + ∞ [</u> d) $-x^2 + 5x 6 \ge 0$ [2, 3]
- e) $x^2 6x + 9 \le 0$ [3]
- __ f) $x^2 x + 1 \ge 0$ \mathbb{R}

12. The polynomial $P(x) = -x^2 + 6x + 4$ enables you to calculate the price P(x) of a share x months after its purchase.

a) What is the share's purchase value? _

b) If the value of the share is greater than \$9, in what interval must the number of

13. Determine the interval in which the variable x must be located for the area of the rectangle on the right to be greater than $18 u^2$?

 $x \in]4, +\infty[$

14. Consider the rectangles ABCD and DEFG represented on the right. Knowing that $m\overline{AE} = m\overline{CG} = 5$ units and that the polynomial $6x^2 + 5x - 25$ represents the area of rectangle ABCD, determine the polynomial which represents the area of rectangle DEFG.

 $6x^2 + 5x - 25 = (3x - 5)(2x + 5)$

Dimensions of DEFG: (3x - 10) and 2x

Area of rectangle DEFG = $6x^2 - 20x$

15. The polynomial $2x^3 + 11x^2 + 15x$ represents the volume of a rectangular base prism. The dimensions of the prism's base are x and (x + 3).

What binomial represents the height of the prism? 2x + 5

16. Consider the rectangle ABFE and the square CDEF on the right. Segment AE measures 2 units more than segment ED.

What is the numerical value of the area of rectangle ABFE if the area of rectangle ABCD is equal to 40 cm²?

•
$$m\overline{ED} = x$$
; $m\overline{AE} = x + 2$; Area of ABCD = $x(2x + 2) = 2x^2 + 2x$

$$2x^2 + 2x = 40 \Rightarrow x = 4 \Rightarrow Area \text{ of } ABFE = 24 \text{ cm}^2$$

17. The dimensions of the rectangle ABCD on the right are 3x and (x + 2). The quadrilateral AEFG is a square with an area of 16 cm^2 . The area of the shaded region is equal to $(2x^2 + 6x) \text{ cm}^2$. What is the numerical value of the area of rectangle ABCD?

$$3x(x+2) = 2x^2 + 6x + 16 \Rightarrow x = 4$$

Area of rectangle ABCD =
$$12 \times 6 = 72 \text{ cm}^2$$

18. The polynomial $h(t) = -t^2 + 6t + 6$ enables you to calculate the height h(t), in metres, of an object t seconds after it is launched. Between what instants after its launch does the object reach a height greater than 14 m?

Between the instants t = 2s and t = 4s.

19. The given right triangle and rectangle have the same area.

What is the numerical value of the rectangle's length?

$$x = 6$$
; length = 8 cm

42

