Radicals are expressions that involve a root sign.
\sqrt{n} is called a radical.
radical sign
$\sqrt{n \quad \text { radicand }}$

Addition and Subtraction

Adding and subtracting radicals is like algebra - they have to be "like terms" - the radicals must match.

Examples: $6 \sqrt{7}-4 \sqrt{7}=$

$$
5 \sqrt{2}+3 \sqrt{2}=
$$

$\sqrt{3}+2 \sqrt{5}+10 \sqrt{5}=$

Multiplication and Division
Properties: 1) $\sqrt{m} \times \sqrt{n} \Leftrightarrow \sqrt{m \times n} \quad$ 2) $\frac{\sqrt{m}}{\sqrt{n}} \Leftrightarrow \sqrt{\frac{m}{n}}$

Example: $4 \sqrt{2} \times 3 \sqrt{6}$

Multiply / divide the coefficients and multiply / divide the radicands. Like terms are not necessary.

$$
\begin{aligned}
4 \sqrt{2} \times 3 \sqrt{6} & = \\
& =
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& 5 \sqrt{20} \div 3 \sqrt{10}= \\
&= \\
& 2 \sqrt{3} \times 6 \sqrt{8} \div 4 \sqrt{12}=
\end{aligned}
$$

Simplifying Radicals

Many radicals can be simplified.

$$
\text { Example: } \sqrt{27}
$$

1. Break down the radicand into two factors ~ one of which is a perfect square.

$$
\sqrt{27}=
$$

2. Apply the multiplication property of radicals to create a coefficient times a radical.

Example: $\quad 4 \sqrt{48}+2 \sqrt{12}$

Example: $\quad 5 \sqrt{98}+2 \sqrt{200}$

Page 15 \#4

Try these!

1. $3 \sqrt{5} \times(-2 \sqrt{3})$
2. $2 \sqrt{3}(5 \sqrt{3}+\sqrt{5})$
3. $(4 \sqrt{5}+3)(4 \sqrt{5}-3)$
4. $12 \sqrt{30} \div 4 \sqrt{5}$
5. $2 \sqrt{75}-2 \sqrt{108}+5 \sqrt{75}-\sqrt{108}+3 \sqrt{12}$

Simplify

1. $3 \sqrt{5} \times-2 \sqrt{3}=-6 \sqrt{15}$
2.

$$
\begin{aligned}
2 \sqrt{3}(5 \sqrt{3}+\sqrt{5}) & =2 \sqrt{3} \cdot 5 \sqrt{3}+2 \sqrt{3} \cdot \sqrt{5} \\
& =10 \sqrt{9}+2 \sqrt{15} \\
& =10 \cdot 3+2 \sqrt{15} \\
& =30+2 \sqrt{15}
\end{aligned}
$$

3. $(4 \sqrt{5}+3)(4 \sqrt{5}-3)=4 \sqrt{5} \cdot 4 \sqrt{5}+4 \sqrt{5}+(-3)+3 \cdot 4 \sqrt{5}+3 \cdot(-3)$

$$
=16 \sqrt{25}-12 \sqrt{5}+12 \sqrt{5}-9
$$

$$
=16(5)-9
$$

$$
\begin{aligned}
& =80-9 \\
& =71
\end{aligned}
$$

$$
=71
$$

4. $2 \sqrt{75}-2 \sqrt{108}+5 \sqrt{75}-\sqrt{108}+3 \sqrt{12}$

$$
\begin{aligned}
& =7 \sqrt{75}-3 \sqrt{108}+3 \sqrt{12} \\
& =7 \sqrt{25 \cdot 3}-3 \sqrt{36 \cdot 3}+3 \sqrt{4 \cdot 3}=35 \sqrt{3}-18 \sqrt{3}+6 \sqrt{3}
\end{aligned}
$$

5. $12 \sqrt{30} \div 4 \sqrt{5}=\frac{12 \sqrt{30}}{4 \sqrt{5}}$ $=23 \sqrt{3}$

Rationalising the Denominator

We do not write expressions with a radical in the denominator.

Example: $\frac{6}{\sqrt{3}}$

We get rid of the radical in the denominator by a process called rationalising.

Multiply by a unit fraction that will square the denominator.

$$
\frac{6}{\sqrt{3}}
$$

Rationalise the denominators:

1. $\frac{4}{\sqrt{13}}$
2. $\frac{5 \sqrt{3}}{3 \sqrt{2}}$
3. $\frac{5 \sqrt{6}}{12 \sqrt{7}}$

Page 17 \# 7

$$
\text { Example: } \frac{5}{\sqrt{3}+\sqrt{6}}
$$

When more than 1 term is in the denominator, we must use conjugates to create a difference of squares.

$$
\text { Example: } \frac{2 \sqrt{5}+3 \sqrt{2}}{2 \sqrt{2}-\sqrt{3}}
$$

Rationalise the denominators:

$$
\begin{aligned}
& \text { 1. } \frac{3}{2 \sqrt{5}+\sqrt{6}} \\
& \text { 2. } \frac{4 \sqrt{10}+2 \sqrt{3}}{3 \sqrt{2}-\sqrt{15}}
\end{aligned}
$$

Page 17 \# 9

