1 The volume of a right prism with a rectangular base is $2 x^{3}+x^{2}-13 x+6$. The height of the prism is $2 x-1$. What are the possible dimensions of its base?

2 In the figure below, the area of rectangle ABCD in square units is expressed by the trinomial $2 x^{2}-11 x+12$, the measure of its sides being binomials. Sides DA and DC are each extended 4 units to form a new rectangle. In square units, what algebraic expression represents the area of the new rectangle?

Factor the following polynomials:
a) $6 x^{2}-2 x-4$
b) $\quad 7 x^{5} y^{2}+21 x^{2} y^{3}+14 x y^{4}$
c) $\quad 6 x^{2}(3 x-2)+2 x(3 x-2)-4(3 x-2)$
d) $15 x y+20 y^{2}-18 x-24 y$
e) $x^{8}-256$
f) $\quad(a+b)^{2}-16$
g) $4 x^{2}+12 x+9$
h) $8 x^{2}-26 x+15$

Solve the following two $2^{\text {nd }}$ degree equations.
a) $5 x^{2}-3 x=0$
b) $6 x^{2}-13 x+2=0$

The square and the rectangle shown below have the same area. Each side of the square measures $(x) \mathrm{cm}$. The area of the rectangle is $\left(2 x^{2}-7 x-30\right) \mathrm{cm}^{2}$.

Area: $\left(2 x^{2}-7 x-30\right) \mathrm{cm}^{2}$
What is the perimeter of the rectangle?

Today, a father is 5 years older than triple his daughter's age. Eight years ago, the product of their ages was 180 . How old will each person be in $\mathbf{1 0}$ years?

