Page 131

				1 6 1	C 11	
1.	Determine the	domain and	range of	each of th	ne tollowing	tunctions.
1007754116110-0						,

a)
$$y = -2x^2 + 4x - 9$$

b)
$$y = 4|x - 5| + 8$$

c)
$$y = \frac{1}{2}\sqrt{-(x-4)} + 3$$

$$dom = \mathbb{R}, ran =]-\infty, -7]$$

$$dom = \mathbb{R}, ran = [8, +\infty[$$

$$dom =]-\infty, 4], ran = [3, +\infty[$$

d)
$$y = -2\left[\frac{1}{3}(x-5)\right] + 4$$
 e) $y = \frac{4}{3(x-1)} + 2$

e)
$$y = \frac{4}{3(x-1)} + 2$$

f)
$$y = -4x + 2$$

$$dom = \mathbb{R},$$

$$ran = \{y \mid y = -2m + 4, m \in \mathbb{Z}\} \qquad dom = \mathbb{R} \setminus \{1\}, ran = \mathbb{R} \setminus \{2\}$$

$$dom = \mathbb{R} \setminus \{1\}, ran = \mathbb{R} \setminus \{2\}$$

$$dom = \mathbb{R}, ran = \mathbb{R}$$

a)
$$y = -2(x-4)^2 + 8$$

b)
$$y = 3x - 5$$

c)
$$y = \frac{3}{4}\sqrt{x+1} - 3$$

Zero:
$$\frac{5}{3}$$
, i.v.: -5

Zeros: 2 and 6, i.v.: -24 Zero:
$$\frac{5}{3}$$
, i.v.: -5 Zero: 15, i.v.: $\frac{-9}{4}$

d)
$$y = 3\left[\frac{1}{2}(x-5)\right] + 6$$
 e) $y = \frac{-2}{5(x-1)} + 4$

$$y = \frac{-2}{5(x-1)} + 4$$

f)
$$y = 3|2x - 1| - 6$$

Zero:
$$\frac{11}{10}$$
, i.v.: $\frac{22}{5}$

Zeros:
$$\frac{-1}{2}$$
 and $\frac{3}{2}$, i.v.: -3

a)
$$y = 2x^2 - 5x - 3$$

b)
$$y = -7x + 63$$

c)
$$y = 2|8 - x| - 12$$

$$\left[-\frac{1}{2},3\right]$$

d)
$$y = \frac{2}{x-5} + 4$$

d)
$$y = \frac{2}{x-5} + 4$$
 e) $y = -2\sqrt{6-x} + 4$ f) $y = -\left[\frac{x}{2}\right] - 3$

$$y = -\left|\frac{\lambda}{2}\right| - \frac{\lambda}{2}$$

$$[-6, +\infty[$$

a)
$$y = -3(x-5)(x+1)$$
 b) $y = 2x-5$

b)
$$y = 2x - 5$$

c)
$$y = -[6 - 3x] + 1$$

d)
$$y = -3\sqrt{-(x-1)} + 4$$
 e) $y = 3|x-5| + 2$

e)
$$y = 3|x - 5| + 2$$

f)
$$y = \frac{3}{2(x-1)} + 5$$

a)
$$y = -3x^2 + 12x - 7$$

b)
$$y = -2|3 - 2x| + 5$$

c)
$$y = -2\sqrt{x} + 7$$

$$max = 5$$

$$max = 5$$

$$max = 7$$

a)
$$y = -3x + 8$$

b)
$$y = 3\sqrt{2-x} + 4$$

c)
$$y = \frac{3}{2(x-1)} + 8$$

$$y = -\frac{1}{3}x + \frac{8}{3}$$

$$y = -\frac{1}{9}(x-4)^2 + 2, x \ge 4$$
 $y = \frac{3}{2(x-8)} + 1$

$$y = \frac{3}{2(x-8)} + 1$$

Page 132

7. Consider the following real functions.

$$f(x) = 3x - 8$$

$$g(x) = 3\sqrt{2x+1} - 5$$

$$h(x) = -2|x - 4| + 12$$

$$i(x) = 3(x-2)^2 + 4$$

$$k(x) = \frac{2}{x-5} + 1$$

$$g(x) = 3\sqrt{2x+1} - 5 h(x) = -2|x-4| + 12$$

$$k(x) = \frac{2}{x-5} + 1 l(x) = 3\left[\frac{1}{5}(x+4)\right] - 6$$

Determine

a)
$$f \circ g(4) = 4$$

b)
$$l \circ h(3) = 0$$

c)
$$k \circ i(5) = \frac{14}{13}$$

d)
$$f \circ l(0) = -26$$

Determine

a)
$$f \circ g(4) = 4$$

b) $l \circ h(3) = 0$

c) $k \circ i(5) = \frac{14}{13}$

d) $f \circ l(0) = \frac{-26}{13}$

e) $k \circ f \circ h(2) = \frac{13}{11}$

f) $l \circ h(-6) = \frac{-9}{13}$

f)
$$l \circ h(-6) = _{-9}$$

8. The path of a marble in a child's game can be represented by the graph in the Cartesian plane below. Initially, the marble is at a height of 7 dm from the ground.

$$f(x) = \begin{cases} 7 & \text{if } 0 \le x < 1\\ \frac{3}{x} + 4 & \text{if } 1 \le x \le 4\\ a | x - 5 | + 8 & \text{if } 4 \le x \le 7\\ 2\sqrt{x - 7} + k & \text{if } 7 \le x \le 11\\ -5.5x + b & \text{if } 11 \le x \le t \end{cases}$$

Determine the duration t of the marble's path.

$$f(4) = 4.75$$
:

$$a | 4 - 5 | + 8 = 4.75;$$

$$a = -3.25$$

$$f(7) = 1.5$$
: $k = 1.5$

$$f(7) = 1.5$$
; $k = 1.5$; $f(11) = 2\sqrt{11-7} + 1.5 = 5.5$

$$-5.5(11) + b = 5.5$$
; $b = 66$; $-5.5 t + 66 = 0 \Rightarrow t = 12 s$.

9. Aaron is playing an electronic game. The height of a flashing dot on the screen can be modeled by a square root function f from 0 to 4 seconds and by an absolute value function g from 4 to 12 seconds as indicated by the graph on the right.

The starting point of the flashing dot is the vertex of the function *f*.

Determine at what times the flashing dot is at a height of 1.5 cm.

1.5 cm.

$$f(x) = -3\sqrt{x} + 6; g(x) = -\frac{3}{4}|x - 8| + 3$$

Height (cm) 6 3 Time (s)

10. A company's logo was drawn using the graphs of three square yroot functions as indicated in the figure on the right.

The rules of the functions f_1 and f_3 are respectively

$$f_1(x) = -\frac{4}{3}\sqrt{x} + 4$$
 and $f_3(x) = -\frac{1}{4}\sqrt{x} + 4$.

The x-coordinate of the intersection point of the functions f_2 and f_3 is 16. Knowing that point A is the vertex of the function f_2 , what is the rule of the function f_2 ?

$$f_3(16) = 3$$
; $A(9, 0)$; f_2 : $y = a\sqrt{x-9}$

The rule of the function f_2 is: $y = \frac{3}{7}\sqrt{7(x-9)}$

11. The value of one Kandev share fluctuated, over a one-month period, according to the rule of an absolute value function. At the opening of the market, this share was worth \$3.50. Twelve days later, it reaches its maximum value of \$8.

How many days go by between the moment the value of the share is worth \$5 for the first time and the moment it is worth \$2 on its descent?

$$y = -\frac{3}{8}|x - 12| + 8$$
; $-\frac{3}{8}|x - 12| + 8 = 5$; $-\frac{3}{8}|x - 12| + 8 = 2$.

24 days.

12. The graph on the right illustrates a projectile's trajectory thrown from a height of 7 m.

After 15 seconds, it reaches its maximum height of 40 m before descending onto the roof of an 18 m high building. The projectile bounces and, 4 seconds later, is at a height of 20 m. The first trajectory follows the model of an absolute value function and the second one follows the model of a square root function whose vertex corresponds to the point where it hits the roof of the building. The projectile hits the wall of another building at a height of 25 m. How many seconds after the projectile was thrown does it hit the wall of the second building?

$$y = -2.2 |x - 15| + 40; -2.2 |x - 15| + 40 = 18; y = \sqrt{x - 25} + 18.$$

The projectile hits the wall of the second building 74 s after it is thrown.