Page 129

13. Determine the domain and range of the following rational functions.

a)
$$y = \frac{3x+2}{x-5}$$

b)
$$y = \frac{-2x+4}{3x-6}$$

c)
$$y = \frac{5x+4}{2x-3}$$

$$dom = \mathbb{R} \setminus \{5\}, \ ran \ f = \mathbb{R} \setminus \{3\}$$

$$dom = \mathbb{R} \setminus \{2\}, ran f = \mathbb{R} \setminus \left[-\frac{2}{3}\right]$$

$$y = \frac{3x+2}{x-5}$$

$$dom = \mathbb{R} \setminus \{5\}, \ ran \ f = \mathbb{R} \setminus \{3\}$$

$$dom = \mathbb{R} \setminus \{5\}, \ ran \ f = \mathbb{R} \setminus \{3\}$$

$$dom = \mathbb{R} \setminus \{2\}, \ ran \ f = \mathbb{R} \setminus \left\{\frac{3}{2}\right\}, \ ran \ f = \mathbb{R} \setminus \left\{\frac{5}{2}\right\}$$

14. Determine the zero (if it exists) and the initial value (if it exists) of the following functions.

a)
$$y = \frac{3x-2}{x-4}$$

b)
$$y = \frac{-5x+10}{2x-5}$$

c)
$$y = \frac{-2x - 6}{4x}$$

$$y = \frac{3x-2}{x-4}$$
 b) $y = \frac{-5x+10}{2x-5}$ c) $y = \frac{-2x-6}{4x}$ Zero: 2, i.v: -2 Zero: -3, i.v: does not exist

15. Determine over which interval the following functions are positive.

a)
$$y = \frac{4x+2}{x-3}$$

$$y - \frac{1}{x - 3}$$

$$f(x) \ge 0 \text{ over } \left[-\infty, \frac{-1}{2} \right] \cup \left[3, +\infty \right[$$

b)
$$y = \frac{-2x+8}{4x-2}$$

$$f(x) \geq 0 \text{ over } \left| \frac{1}{2}, 4 \right|$$

16. Study the variation of the following functions.

a)
$$y = \frac{-4x+9}{x-3}$$

$$f \nearrow over \mathbb{R} \setminus \{3\}$$

b)
$$y = \frac{2x+5}{3x-2}$$

$$f \supset over \mathbb{R} \setminus \left\{\frac{2}{3}\right\}$$

Page 130

17. Write the rule of the following rational functions in general form.

a)
$$y = \frac{3}{2(x-1)} + 4 \frac{y = \frac{8x-5}{2x-2}}{}$$

a)
$$y = \frac{3}{2(x-1)} + 4 \frac{y = \frac{8x-5}{2x-2}}{5(x-3)}$$
 b) $y = \frac{-2}{5(x-3)} - 1 \frac{y = \frac{-5x+13}{5x-15}}{}$

18. Write the rule of the following rational functions in standard form.

a)
$$y = \frac{3x+2}{x-3}$$

b)
$$y = \frac{4x+3}{2x-6}$$

c)
$$y = \frac{-2x+5}{3x+4}$$

$$y = \frac{11}{x - 3} + 3$$

$$y = \frac{15}{2(x-3)} + 2$$

$$y = \frac{3x+2}{x-3}$$

$$y = \frac{11}{x-3} + 3$$

$$y = \frac{15}{2(x-3)} + 2$$

$$y = \frac{23}{9(x+\frac{4}{3})} - \frac{2}{3}$$

Toleration Consider the rational functions $f(x) = \frac{2x+3}{x-4}$ and $g(x) = \frac{3x+5}{x+3}$	19.	Consider	the rational	functions	$f(x) = \frac{2x+3}{x-4}$	$\frac{3}{2}$ and $g(x) =$	$=\frac{3x+5}{3x+3}$
---	-----	----------	--------------	-----------	---------------------------	----------------------------	----------------------

a) Determine the rule of the composite

1.
$$g \circ f(x) = \frac{y = \frac{11x - 11}{5x - 9}}{}$$

$$2. \ f \circ g(x) = y = \frac{g_{x+19}}{-x-7}$$

- b) What can you say about the composition of a rational function with a rational function? The composition of a rational function with a rational function is also a rational function.
- **20.** Consider the rational function $y = \frac{5x+4}{x-3}$ (general form).

Justify the steps which enable you to determine the rule of the inverse f^{-1} .

1. Isolate x in the equation $y = \frac{5x+4}{x+3}$.

$$y(x-3) = 5x + 4$$
 Cross products are equal.

$$xy - 3y = 5x + 4$$
 Distributive property of multiplication over subtraction.

$$xy - 5x = 3y + 4$$
 Subtract 5x and add 3y to each side.

$$x(y-5) = 3y + 4$$
 Factor out x on the left side.
 $x = \frac{3y+4}{y-5}$ Isolate the variable x.

$$y-5$$
2. Switch the letters x and y to obtain the rule of the inverse.

We get:
$$y = \frac{3x+4}{x-5}$$
.

21. Consider the rational function $f(x) = \frac{3x-2}{2x+5}$.

a) Determine the rule of the inverse
$$f^{-1}$$
.
$$f^{-1}(x) = \frac{-5x - 2}{2x - 3}$$

b) Verify that

1.
$$f \circ f^{-1}(x) = x$$

2.
$$f^{-1} \circ f(x) = x$$

22. Consider the rational function $f(x) = \frac{-2x+3}{4x+1}$.

Consider the rational function
$$f(x) = \frac{-2x+3}{4x+1}$$
.

a) Determine the domain and range of f .

b) Determine the rule of the inverse f^{-1} .

$$f^{-1}(x) = \frac{-x+3}{4x+2}$$

c) Determine the domain and range of the inverse f^{-1} and verify that dom f^{-1} and verify that f^{-1} and verify that f^{-1} and f^{-1} and

b) Determine the rule of the inverse
$$f^{-1}$$
. $f^{-1}(x) = \frac{-x+3}{4x+2}$

c) Determine the domain and range of the inverse f^{-1} and verify that dom $f^{-1} = \operatorname{ran} f$ and ran $f^{-1} = \text{dom } f$.

$$dom f^{-1} = \mathbb{R} \setminus \left\{-\frac{1}{2}\right\}, ran f^{-1} = \mathbb{R} \setminus \left\{-\frac{1}{4}\right\}$$