ANSWERS (Quadratic Functions – Extra Practice)

1. Determine the domain and range of the following functions.

a) $f(x) = -3(x-2)^2 + 5$ $\frac{dom f = \mathbb{R}}{ran f =]-\infty, 5]$

b) $f(x) = 2x^2 + 4x - 9$ $dom f = \mathbb{R}$ $ran f = [-11, +\infty]$

- 2. Determine the zeros of the function $f(x) = -3(x+1)^2 + 12$. $x_1 = -3$ and $x_2 = 1$
- **3.** Determine the *y*-intercept of $f(x) = -\frac{1}{2}(x+4)^2 + 9$. y=1
- 4. Determine over what interval the function $f(x) = 2x^2 5x 3$ is positive. $f(x) \ge 0 \text{ over } \left| -\infty, -\frac{1}{2} \right| \cup [3, +\infty[$
- **6.** Determine the extrema of the function $f(x) = -2x^2 + 12x 7$. max f = 11
- \text{\text{Vhat is the axis of symmetry of the function } } f(x) = $-\frac{1}{4}x^2 + 3x + 1$? x = 6
- Determine the values of x for which the function $f(x) = -3(x+4)^2 + 5$ is equal to -7.
- Find the rule of the quadratic function represented by a parabola with a vertex at V(-1, 5) and passing through the point P(1, 3). $y = -\frac{1}{2}(x+1)^2 + 5$
- **10.** A stone is thrown upward from the top of a seaside cliff. The function which gives the stone's height h (in m) above sea level as a function of time t (in sec) since it was thrown has the rule: $h = -t^2 + 12t + 160$.

Find the interval of time over which the height of the stone is at least 180 m above sea level.

Between the instants t = 2 and t = 10 seconds after it was thrown.

II. The height h, in metres, of a diver relative to the water level is described by the rule $h = \frac{1}{2}t^2 - 6t + 10$ where t represents the elapsed time, in seconds, since the start of the dive. How long did the diver remain underwater?

During 8 seconds.

A projectile is thrown upward from a height of 12 m. After 10 seconds, it reaches its maximum height and after 24 seconds, it hits the ground. Knowing that its trajectory follows the rule of a quadratic function, find the elapsed time between the moment it reaches a height of 6.5 m, on its descent, and the time when it hits the ground.

Height (m) 12 Time (s)

 $y = -\frac{1}{8}(x+4)(x-24).$

It reaches, on its descent, a height of 6.5 m at the instant t = 22 sec. The elapsed time is therefore 2 sec.