Page 85

Determine the following absolute values.

a)
$$|+8| = _{8}$$

b)
$$|-4.7| = 4.7$$

c)
$$|0| = 0$$

d)
$$|\pi| = \pi$$

e)
$$|-6.53| = 6.53$$

f)
$$\left| +\frac{3}{4} \right| = \frac{\frac{3}{4}}{4}$$

a)
$$|+8| = _{8}$$
 b) $|-4.7| = _{4.7}$ c) $|0| = _{0}$ d) $|\pi| = _{\pi}$ e) $|-6.53| = _{6.53}$ f) $|+\frac{3}{4}| = _{4}$ g) $|-\frac{2}{3}| = _{3}$ h) $|-\frac{5}{18}| = _{18}$

h)
$$\left| -\frac{5}{18} \right| = \frac{5}{18}$$

Page 86

2. Complete the following using the appropriate symbol =, >, <.

a)
$$|x + 5| \ge 0$$

b)
$$|x-3| = |3-x|$$

b)
$$|x-3| = |3-x|$$
 c) $|2(x-1)| = 2|x-1|$

d)
$$|7-12| > |7| - |12|$$
 e) $\left|\frac{x+2}{x-1}\right| = \frac{|x+2|}{|x-1|}$ **f)** $|-6+9| < |-6| + |9|$

$$\begin{array}{c|c} x+2 \\ \hline x-1 \end{array} \qquad \begin{array}{c|c} x+2 \\ \hline x-1 \end{array}$$

Page 87

3. Solve the following equations.

a)
$$|x| = 12$$
 b) $|x| = -8$ $S = (-12, 12)$ $S = \emptyset$

(a)
$$|x| = -8$$

(b) $|x| = 0$

c)
$$|x+5| = 0$$

S = (-5)

d)
$$|2x + 1| = 7$$

S = $\{-4, 3\}$

e)
$$\left| \frac{1}{2}x - 5 \right| = 4$$

S = [2, 18]

f)
$$|6 - x| = -3$$

 $S = \emptyset$

Solve the following equations.

a)
$$2|x-5|-4=0$$

S = 13, 71

b)
$$-2|3x - 1| + 4 = -6$$

 $\mathbf{S} = \left\{ -\frac{4}{3}, \mathbf{2} \right\}$

c)
$$12 - |6 - 2x| = 3$$

 $S = \left[-\frac{3}{2}, \frac{15}{2}\right]$

d)
$$|x-5|+8=2$$

 $s=\emptyset$

d)
$$|x-5|+8=2$$

 $s=\varnothing$
e) $-3|2x+5|+6=6$
 $s=\left[-\frac{5}{2}\right]$

f)
$$|4x - 5| + 6 = 9$$

 $S = \left[\frac{1}{2}, 2\right]$

10. Write the rules of the following functions in the form y = a|x - h| + k and identify the parameters a, h and k.

a)
$$y = -2|3x + 3| + 5$$

 $y = -6|x + 1| + 5$; $a = -6$, $h = -1$, $k = 5$

c)
$$y = -\frac{1}{2} |8x - 4| + 3$$

 $y = -4 |x - \frac{1}{2}| + 3$; $a = -4$, $h = \frac{1}{2}$, $k = 3$

b)
$$y = 4|6 - 3x| + 5$$

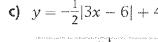
 $y = 12|x - 2| + 5$; $\alpha = 12$, $h = 2$, $k = 5$

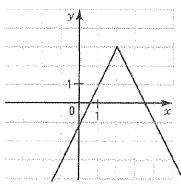
d)
$$y = -\frac{5}{6} \left| 4 - \frac{1}{5}x \right| + 3$$

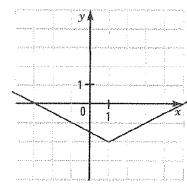
 $y = -\frac{1}{6} \left| x - 20 \right| + 3; \ a = -\frac{1}{6}, \ h = 20, \ k = 3$

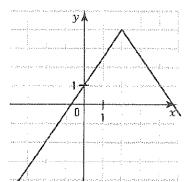
11. Graph the following functions.

a)
$$y = -2|x - 2| + 3$$









Page 94

12. Represent the graph and do a study of the function $f(x) = -\frac{1}{4}|2(x-1)| + 2.$

 $dom = \mathbb{R}$; $ran =]-\infty, 2].$

Zeros: -3 and 5.

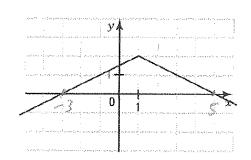
Initial value: 1.5.

Sign: $f(x) \ge 0$ over [-3, 5].

 $f(x) < 0 \text{ over }]-\infty, 2[\cup]5, +\infty[.$

Variation: $f \ge \text{over }]-\infty, 1]; f \ge \text{over } [1, +\infty]$

Extrema: max = 2



Page 95

- **TS.** Determine the domain and range of each of the following functions.
 - a) v = -2|x+5|-1 $dom = \mathbb{R}, ran = [-\infty, -1]$
- **b)** $y = \frac{1}{4} |-2(x-1)| + 5$ $dom = \mathbb{R}, ran = [5, +\infty]$
- **14.** Determine the zeros of the following functions.
 - a) y = 3|x 5| 6 3 and 7
- b) $y = -\frac{1}{2}|6 3x| + 4$ $\frac{-\frac{2}{3} \text{ and } \frac{14}{3}}{}$
- c) y = 4|2x + 1| + 8 No zero
- d) y = -5|6 x| __6
- Consider the linear function f(x) = 2x 3 and the absolute value function g(x) = 3|3x + 5| 4. Determine the initial value of the composite g(2x-3) = 3|5x-4| = 4
 - a) gof/0/8

- b) food 19 (1) = 19
- **16.** Determine the interval over which each of the following functions is positive.
 - a) $y = -\frac{1}{3}|x 5| + 2$

b) v = 2|3 - 2x| - 4

 $f(x) \ge 0 \text{ over } [-1, 11]$

 $f(x) \ge 0$ over $\left|-\infty, \frac{1}{2}\right| \cup \left|\frac{5}{2}, +\infty\right|$

c) $y = \frac{3}{4}[-2x + 4] - 3$

- **d)** y = 3|x 5| + 6
- $f(x) \ge 0$ over $]-\infty$, $0] \cup [4, +\infty[$

- $f(x) \geq 0$ over \mathbb{R}
- **7.** Determine the interval over which each of the following functions is increasing.
 - a) v = 5|6 4x| + 2 $f \nearrow over \left[\frac{3}{2}, +\infty \right]$

- **b)** v = -3|2x + 4| + 5 $f \ge \text{over }]-\infty, -2]$
- Determine the solution set to each of the following inequalities.
 - a) |x-5| > 3
- **b)** $|6 x| \le 1$

- $S =]-\infty, 2[\cup]8, +\infty[$
- S = [5, 7]

 $S = \left| -\infty, -\frac{2}{3} \right| \cup [2, +\infty[$

- **d)** $|2x + 5| \le 0$
- e) -2|x+1|+5>-5
- f) 3|2-x|+4>1

 $S = \left[-\frac{5}{2} \right]$

S =]-6, 4[

 $S = \mathbb{R}$

- **q)** $6 3|x 1| \le 0$
- h) -|2x-1|+5>0
- i) $\left| \frac{x}{2} 1 \right| > 0$

- $S = J-\infty, -1J \cup [3, +\infty]$
- S = J-2, 3I

 $S = \mathbb{R} \setminus \{2\}$

Page 96

19. Study each of the following functions and complete the following table.

	f(x) = -2 x-1 + 4	f(x)=3 x+2 -6	$f(x) = \frac{1}{2} x - 4 + 3$	f(x) = 35 - x
Dom f	15	[£	R	99
Ran f]–∞, 4]	[-6, +∞[<i>[3,</i> +∞[]-∞, 0]
Zero(s) if they exist	-I and 3	-4 and 0	None	5
Initial value	2	0	5	-15
Sign	$f(x) \ge 0 \text{ over } [-1, 3]$ $f(x) < 0 \text{ over }]-\infty, -1[\cup]3, +\infty[$	$f(x) \ge 0$ over $]-\infty$, $-4] \cup [0, +\infty[$ f(x) < 0 over $]-4$, $0[$		$f(x) \ge 0$ over $\{5\}$ $f(x) < 0$ over $\mathbb{R} \setminus \{5\}$
Variation	$f \nearrow over] - \infty, 1]$ $f \lor over [1, + \infty[$	f ≥ over [-2, +∞[f ≥ over]-∞, -2]	$f \land over [4, +\infty[$ $f \lor over]-\infty, 4]$	$f \nearrow over]-\infty, 5]$ $f \nearrow over [5, +\infty[$
Extrema	max = 4	min = -6	min = 3	max = 0

Page 98

20. Find the rule of an absolute value function whose graph

a) has the vertex V(3, 4) and passes through the point P(7, 6). $y = \frac{1}{2}|x-3|+4$ b) passes through the points A(2, -6), B(5, -8) and C(-4, -6). $y = -\frac{2}{3}|x+1|-4$

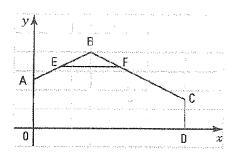
b) passes through the points A(2, -6), B(5, -8) and C(-4, -6).

y = -2|x+1|+3c) passes through the points A(1,-1), B(3,-5) and C(-4,-3)

 $oldsymbol{2}$ $oldsymbol{1}_{*}$ In order to draw the simulated trajectory of a toy airplane, Ethan uses the rule of an absolute value function that gives the airplane's height y, in metres, as a function of elapsed time x, in seconds. The rule of the function is $y = -\frac{5}{4}|x - 8| + 10$.

For how many seconds is the height of the airplane above 7 m?

22. In the Cartesian plane on the right, a view of an airplane hangar is represented with the roof of the hangar corresponding to an absolute value function given by the rule $y = -\frac{1}{2}|x - 6| + 8.$



a) What is the height of the wall A0? 5 m

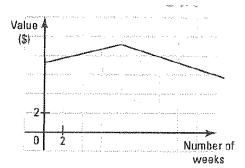
b) What is the height of the wall CD if the width of the hangar is equal to 16 m? 3 m

c) The ceiling EF is built at a height of 6.5 m. What is the width of the ceiling?

23. The graph on the right represents the evolution of a share's value on the stock market. Eight weeks after its purchase, the share reaches its maximum value of \$9. If it initially was worth \$7, what will it be worth after 13 weeks?

$$y = a |x - 8| + 9; \ 7 = 8a + 9; \ a = -\frac{1}{4}$$

$$y = -\frac{1}{4} |x - 8| + 9.$$
It will be worth \$7.75.

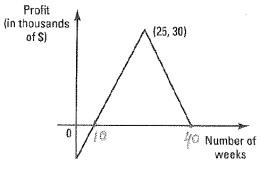


24. The graph on the right represents the profit of a recycling company during its first 40 weeks of operation.

During how many weeks was the profit greater than \$15 000?

$$y = -2 |x - 25| + 30$$

 $-2 |x - 25| + 30 = 15$; $x = 17.5$ or $x = 32.5$.
During 15 weeks.



Page 99

25. The air conditioning system in an office building has been programmed so that it turns on when the outside temperature reaches 23 °C and turns off when it reaches 20 °C.

The outside temperature varies according to the rule of the absolute value function given by y = -3|x - 6| + 35 where x represents the elapsed number of hours since 6 a.m. and y represents the outside temperature in ${}^{\circ}C$.

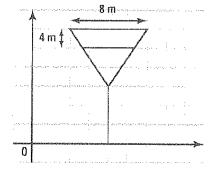
How many hours was the system on?

It turns on at 8 a.m. and turns off at 5 p.m. The system is on during 9 hours.

26. The lateral view of a channelling system is represented in the Cartesian plane on the right, scaled in metres.

The walls of this system are represented by an absolute value function with the rule: y = 3|x - 8| + 12.

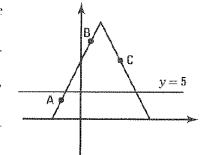
A filtering net is placed 4 m below the ceiling of the canal. If the width of the canal is 8 m, what is the width of the filtering net?



When
$$x = 12$$
, $y = 24$;

When y = 20, $x = \frac{16}{3}$ or $x = \frac{32}{3}$. The width of the net is 5.33 m.

27. The graph on the right represents the front of a house. The base of the roof corresponds to the line y = 5. The sides of the roof form the graph of an absolute value function passing through the points A(-2, 3), B(2, 13) and C(8, 8). What is the area of the triangle limited by the roof and the line?



The area of the triangle is 67.6 u^2 .

28. A projectile is thrown from a height of 6 m and follows the trajectory of an absolute value function. It reaches a maximum height of 14 m after 4 seconds. Five seconds after reaching its maximum height, it bounces off a cement block and follows the trajectory of a quadratic function. If the maximum height of the second bounce is 8 m and occurs three seconds after bouncing off the cement block, when will the projectile hit the ground? (Round your answer to the nearest second).

 $y = -\frac{5}{2}|x - 4| + 18$; base = $\frac{52}{5}$; height = 13.

$$y = -2|x-4| + 14$$
, $P(9, 4)$; $y = -\frac{4}{9}(x-12)^2 + 8$;

The projectile hits the ground at t = 16 s.