Page 243

10. Use the cosine law to calculate the value of x. (Round to the nearest tenth.)

a)

x = 11.8

x = 5.3

e)

 $x = 125.1^{\circ}$

x = 6.1

$$x = 41.4^{\circ}$$

Solve the following triangle.

 $x = 44.4^{\circ}$

$$m\overline{BC} = 3.35$$

$$m \angle B = 78^{\circ}$$

 $m \angle C = 47.2^{\circ}$

Page 244

12. Solve the triangle on the right. (Round each measure to the nearest tenth.)

 $m \angle A = 36.3^{\circ}; m \angle B = 26.4^{\circ}; m \angle C = 117.3^{\circ}$

13. In the triangle on the right, we have: $\overline{MAC} = 5$ cm, $\overline{MBC} = 7.5$ cm and m $\angle A = 85^{\circ}$.

What is, to the nearest tenth, the measure of side AB?

 $m \angle B = 41.6^{\circ}; \ m \angle C = 53.4^{\circ}; \ m\overline{AB} = 6.04$

The measure of \overline{AB} , to the nearest tenth, is 6 cm.

14. An engineer wants to determine the distance between two cottages on opposite sides of a lake. The engineer is located at point A and the cottages are at B and C. What is, to the nearest metre, the distance separating the two cottages?

255 m

Lake

In the triangle ABC on the right, segment DE is drawn.

m \angle BDE = 60°, mBD = 4 cm, mDE = 3 cm and mDC = 6 cm.

What is, to the nearest hundredth, the measure of side AC?

mBE = $\sqrt{13} \approx 3.61$ cm; m \angle B ≈ 46 °;

mAC = 10 sin 46° = 7.19 cm

In the quadrilateral ABCD on the right, we have: $\overline{mAB} = 5$ cm, $\overline{mBC} = 7$ cm, $\overline{mCD} = 3$ cm, $\overline{mAD} = 4$ cm and $\overline{m} \angle ABC = 60^\circ$. What is, to the nearest degree, the measure of angle ADC? $\overline{mAC} = 6.24$ cm; $\overline{m} \angle ADC = 125.7^\circ$

Angle D measures 126° to the nearest degree.

In the quadrilateral on the right, we have: $\overline{mAB} = 5$ cm, $\overline{mAD} = 6$ cm, $\overline{mCD} = 4$ cm, $\overline{m} \angle BAD = 80^\circ$ and $\overline{m} \angle BCD = 70^\circ$. What is, to the nearest tenth, the measure of segment BC? $\overline{mBD} = 7.11$ cm; $\overline{m} \angle DBC = 31.9^\circ$; $\overline{m} \angle BDC = 78.1^\circ$ $\overline{mBC} = 7.40$ cm.

The measure of \overline{BC} , to the nearest tenth, is 7.4 cm.

In the figure on the right, lines AD and FE are parallel, $\overline{mAC} = 3$ cm, $\overline{mBC} = 2$ cm and $\overline{mAB} = 4$ cm.

What is, to the nearest degree, the measure of angle CBE? $m \angle BAC \approx 29^{\circ}$, $m \angle ABC = 46.7^{\circ}$

$$m \angle ABF = 69^{\circ}, m \angle CBE = 64.3^{\circ}$$

Angle CBE measures 64° to the nearest degree.

