Page 154

28. The tables of values below correspond to an exponential function with a rule of the form $y = ac^x$. Find the rule of each function.

a)	Х	0	1
	у	1 2	$\frac{3}{2}$

y:	= 1/2	(3)×

b)	X	0	-I
	У	2	8

y =	= 2	$\left(\frac{1}{4}\right)$	×
-----	------------	----------------------------	---

c)	X	0	2
	у	-3	-12

$$y=-3(2)^{\kappa}$$

d)	х	0	-2
	у	-4	- 9

$$y = -4\left[\frac{2}{3}\right]^x$$

- **29.** Each of the following situations is described by an exponential function of the form $y = ac^{bx}$. After establishing the unit of time,
 - 1. define the variables x and y. 2. determine the parameters a, b and c. 3. find the rule of the function.
 - a) In a centrolled environment containing 1000 bacteria initially, the number of bacteria triples every 10 minutes.

I. x: number of elapsed hours since the beginning, y: number of bacteria

2.
$$a = 1000$$
, $b = 6$, $c = 3$

3.
$$y = 1000(3)^{6x}$$

b) In an environment initially containing 100 insects, the number of insects doubles every 3 days.

1. x: number of elapsed days since the beginning, y: number of insects

2.
$$a = 100$$
, $b = \frac{1}{3}$, $c = 2$

3.
$$y = 100(2)^{\frac{1}{3}x}$$

c) A car bought for \$30 000 loses 20% of its value every year.

1. x: number of elapsed years since the purchase, y: value of the car

2.
$$a = 30\ 000$$
, $b = 1$, $c = 0.80$

3.
$$y = 30\ 000(0.80)^x$$

d) An initial population of 1000 deer increases by 15% each year.

1. x: number of elapsed years since the beginning, y: deer population

2.
$$a = 1000$$
, $b = 1$, $c = 1.15$

3.
$$y = 1000(1.15)^x$$

e)	A radioactive mass of 50 g loses half of it 1. x: number of elapsed hours since noon	tive mass of 50 g loses half of its mass each period of 6 hours starting at noon. mber of elapsed hours since noon, y: remaining mass		
	2. $a = 50$; $b = \frac{1}{6}$, $c = \frac{1}{2}$	3. $y = 50\left(\frac{1}{2}\right)^{\frac{x}{6}}$	TO VOTATION AND AND	
f)	An initial population of 100 birds increases by 15% every 2 years.			
	1. x: number of elapsed hours since the beginning, y: bird population			
	2. $a = 100$, $b = \frac{1}{2}$, $c = 1.15$	3. $y = 100(1.15)^{\frac{x}{2}}$		

30. A capital c_0 is invested at a fixed annual interest rate i compounded n times per year. The accumulated capital c(t) after t years is given by the formula

$$c(t) = c_0 \left(1 + \frac{i}{n} \right)^{nt}.$$

a) Establish the rule of the function c(t) that gives the accumulated capital of \$1000 invested at a 6% interest rate compounded

1. annually. $C(t) = 1000 (1.06)^t$ 2. every 6 months. $C(t) = 1000 (1.03)^{2t}$

3. each month. $C(t) = 1000(1.005)^{12t}$ 4. each day. $C(t) = 1000 \left(1 + \frac{0.06}{365}\right)^{365t}$

b) Calculate the accumulated capital after 5 years in each of the preceding cases.

1. <u>\$1338.23</u> 2. <u>\$1343.92</u> 3. <u>\$1348.85</u> 4. <u>\$1349.83</u>