Systems of Linear Equations

- Two lines that don't have the same slope must intersect (cross) at one point.
- We call two lines sharing the same plane a "system".
- Finding the point of intersection is called "solving a system".

There are three (3) ways to solve a system.

- 1. Graph it
- 2. Make a table of values
- 3. Use algebra (3 methods)

$$1 y = -3x + 8$$

$$y = 2x - 7$$

2. Table of values

For each line, choose several of the same values for x. Find the y-values for each equation. The solution is found when you get the same y-value.

x	y_1		x	y_2
-1	11		-1	90
0	8		0	-7
1	5		1	-5
2	2		2	-3
3	-1		3	-1

Solution: (3,-1)

4. Systems of Equations.notebook

March 08, 2023

3. Algebraic Method #1: Comparison

$$-3x + 8 = 2x - 7$$

$$-3x + 3x + 8 = 2x + 3x - 7$$

$$8 = 5x - 7$$

$$8 + 7 = 5x - 7 + 7$$

$$15 = 5x$$

$$\frac{15}{5} = \frac{5x}{5}$$

$$3 = x$$

$$7 = 5x + 3x - 7 + 7$$

$$15 = 5x$$

$$y = 2(3) - 7 / y = -3(3) + 8$$

$$y = 6 - 7$$

Solution: (3,-1)

Systems of Linear Equations

1) Comparison: best used when both of the equations are in standard form.

Example: Solve the following system using the comparison method.

$$y = -5x + 17$$
$$y = 5x - 9$$

$$\begin{array}{lll}
-5x + 17 &= 5x - 9 & y &= -5x + 17 \\
17 &= 10x - 9 & y &= -5(2.6) + 17 \\
17 &= 10x - 9 & y &= -13 + 17 \\
26 &= 10x & y &= 4
\end{array}$$

$$\begin{array}{lll}
y &= -5x + 17 \\
y &= -5(2.6) + 17 \\
y &= -13 + 17
\end{array}$$

$$\begin{array}{lll}
y &= 5x - 9 \\
y &= 5(2.6) - 9 \\
y &= 13 - 9 \\
y &= 4
\end{array}$$
Solution: (2.6,4)

Example: Solve the following system using the comparison method.

$$y = \frac{7}{4}x + 5$$
$$y = \frac{3}{4}x - 3$$

$$\frac{7}{4}x + 5 = \frac{3}{4}x - 3$$

$$\frac{7}{4}x + 5 = \frac{3}{4}x - 3$$

$$\frac{7}{4}x - \frac{3}{4}x + 5 = \frac{3}{4}x - \frac{3}{4}x - 3$$

$$\frac{4}{4}x + 5 = -3$$

$$x + 5 - 5 = -3 - 5$$

$$x = -8$$

$$y = \frac{3}{4}(-8) - 3$$

$$y = -6 - 3$$

$$y = -9$$

$$y = -14 + 5$$

$$y = -9$$

Solution: (-8,-9)

WB.
$$q = 176$$

6. a) $y = 2x + 9$

$$y = -3x - 1$$

$$2x + 9 = -1$$

$$5x + 9 = -1$$

$$5x = -10$$

$$7 = 2(-2) + 9$$

$$5 = 3(-2) - 7$$

$$5 = 3(-2) - 7$$

$$5 = 3(-2) - 7$$

$$5 = 3(-2) - 7$$

$$5 = 3(-2) - 7$$

$$5 = 3(-2) - 7$$

$$5 = 3(-2) - 7$$

$$5 = 3(-2) - 7$$

$$5 = 3(-2) - 7$$

$$5 = 3(-2) - 7$$

$$5 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3(-2) - 7$$

$$7 = 3$$

Frank works at a clothing store. His salary is \$200 plus 10% of his total sales. Nancy works at another store and makes \$250 plus 8% of her total sales.

How much would they have to sell in order to make the same salary?

a With the variables salary: / depends on sales: x

@ Write the equations

(3) Solve the system

$$0.1x + 200 = 0.08x + 250$$
 $0.02x = 500$
 $0.1x + 200 = 0.08x + 250$
 $0.02x = 5000$
 $0.1x + 200 = 0.08x + 250$
 $0.02x = 5000$
 0.0

4) Answer the question:

They would sell \$ 2500 worth of merchandise.

W.B P177 (#8)