Page 140

2. For each of the following exponential functions,

- 1. determine the base. 2. indicate if the function is increasing or decreasing.

 a) $f(x) = \left(\frac{4}{3}\right)^x \frac{\frac{4}{3}$; increasing b) $f(x) = \left(\frac{4}{5}\right)^x \frac{\frac{4}{5}$; decreasing
- c) $f(x) = 2^{-x}$ $\frac{1}{2}$; decreasing d) $f(x) = \left(\frac{2}{3}\right)^{-x}$ $\frac{3}{2}$; increasing e) $f(x) = 3^{2x}$ 9; increasing f) $f(x) = \left(\frac{9}{4}\right)^{-\frac{x}{2}}$ $\frac{2}{3}$; decreasing
- f) $f(x) = \left(\frac{9}{4}\right)^{-\frac{x}{2}} \frac{\frac{2}{3}}{3}$; decreasing
- In each of the following cases, the point A belongs to the graph of an exponential function defined by the rule $y = c^{\alpha}$. Determine the rule of each function.

- a) $A(2, 9) = \frac{y = 3^x}{}$ b) $A\left(\frac{1}{2}, 2\right) = \frac{y = 4^x}{}$ c) $A\left(-\frac{1}{2}, \frac{3}{2}\right) = \frac{y = \left(\frac{4}{9}\right)^x}{}$ d) $A\left(-\frac{1}{3}, \frac{1}{2}\right) = \frac{y = 8^x}{}$ e) $A\left(-\frac{1}{2}, \frac{5}{4}\right) = \frac{y = \left(\frac{16}{25}\right)^x}{}$ f) $A\left(-\frac{3}{2}, \frac{8}{27}\right) = \frac{y = \left(\frac{9}{4}\right)^x}{}$
- **4.** The point $A\left(-\frac{1}{2}, \frac{2}{3}\right)$ belongs to the graph of an exponential function defined by the rule $y = c^{\alpha}$.
 - a) A point B on this graph has an x-coordinate of -2. What is its y-coordinate? $\frac{\left(\frac{9}{4}\right)^{-2} = \frac{16}{81} }{16}$
 - **b)** A point C on this graph has a y-coordinate of $\frac{4}{9}$. What is its x-coordinate?
- On the right, we have represented the exponential functions defined by the rules:

$$y = 2^x$$
, $y = \left(\frac{3}{2}\right)^x$, $y = 3^x$, $y = \left(\frac{1}{2}\right)^x$, $y = \left(\frac{2}{3}\right)^x$, $y = \left(\frac{1}{3}\right)^x$.

$$y = \left(\frac{2}{3}\right)^x \qquad y = \left(\frac{1}{2}\right)^x$$

$$y = \left(\frac{1}{3}\right)^x$$

Associate each curve to its equation.

1.
$$\frac{y = \left(\frac{z}{3}\right)^x}{2}$$
2. $\frac{y = \left(\frac{1}{2}\right)^x}{3}$
3. $\frac{y = \left(\frac{1}{3}\right)^x}{4}$
4. $\frac{y = 3^x}{3}$
5. $\frac{y = 2^x}{3}$
6. $\frac{y = \left(\frac{3}{3}\right)^x}{3}$

- one increases the fastest? Justify your answer.

b) Of the three increasing exponential functions, which

c) Of the three decreasing exponential functions, which one decreases the fastest? Justify

$$y = \left(\frac{1}{3}\right)^x$$
. It is the one with the smallest base.

- a) Verify that f(2) = g(-2). f(2) = 4; g(-2) = 4.
- **b)** 1. Show that f(x) = g(-x) for any real number x. $g(-x) = \left(\frac{1}{2}\right)^{-x} = 2^x = f(x), \forall x \in \mathbb{R}$
 - 2. What can be deduced from the curves of the exponential functions representing the functions f and g?

The curves are symmetrical about the y-axis.