Example: Find the equation of the line that passes through the point $(8,6)$ and is perpendicular to the equation $4 x+5 y-6=0.5 y$
(1) convert

$$
\begin{array}{rlr}
4 x-6=5 y & (2) \text { slope }=-\frac{5}{4} \quad x=8 y=6 \\
\left(\frac{4}{5} x\right)-\frac{6}{5}=y & 6=-\frac{5}{4}(8)+b \\
\xlongequal[O]{O} \text { Slope: }-\frac{A}{B}=-\frac{4}{-5}=\frac{4}{5} & 6=-\frac{40}{4}+b \\
y=-\frac{5}{4} x+16 & 6=-10+b \\
& 16=b
\end{array}
$$

Symmetric Form

The equation of an oblique line that does not pass through the origin can be written as ...

$$
\frac{x}{a}+\frac{y}{b}=1
$$

where $a_{\text {is the }} x_{\text {-intercept (zero) and }} b$ is the $y_{\text {-intercept, }}$, and the slope (rate of change) is $\frac{-b}{a}$.

Example: What is the equation of the line whose

$$
\begin{array}{r}
\text { intercepts are } \\
\begin{array}{c}
x-i n t \\
\therefore a=5
\end{array} \\
(5,0)
\end{array} \underbrace{b=-4}_{y-i n t}
$$

Answer: $\begin{aligned} & \frac{x}{5} \oplus \frac{y}{-4}=1 \\ & \frac{x}{5}-\frac{y}{4}=1\end{aligned}$

Example: What is the equation of the line whose
x-interceptrs $(-12,0)$ and passes through
the point $(6,10.5)$?

$$
\begin{aligned}
& \frac{x^{\nu}}{g}+\frac{y^{\swarrow}}{b}=1 \longrightarrow \frac{6}{-12}+\frac{10.5}{b}=1 \\
&-0.5+\frac{10.5}{b}=1
\end{aligned}
$$

$$
\frac{\frac{10.5}{b-1.5}}{\frac{10.5}{1.5}=b}=\frac{1.5 b}{1.5}=\frac{10.5}{1.5}
$$

$7=b \quad$ Answer: $\frac{x}{-12}+\frac{y}{7}=1$

Example: Draw the graph of $\frac{x}{2}+\frac{y}{-6}=1$.

$$
\begin{aligned}
& x-\operatorname{in} t=2 \\
& y-\text { int }=-6
\end{aligned}
$$

Converting From One Form to Another

Example: Determine the equation of the line that passes through the points $(3,11) \&(6,3)$ in all three forms.

1) Standard $y=m x+b$
(1) r

$$
\begin{aligned}
& \text { ndard } y=m x+b \\
& m=\frac{3-11}{6-3} \quad(2) U \text { sing }(6,3) \\
&=-\frac{8}{3} \quad y=-\frac{8}{3} x+19
\end{aligned}
$$

$$
3=-\frac{8}{3}(6)+b
$$

$$
3:-16+b
$$

$$
1 q=b
$$

2) General $A x+B y+C=0$

$$
y=-\frac{8}{3} x+19
$$

$$
\begin{array}{ll}
3\left(0=-\frac{8}{3} x-y+19\right) & \text { 足. }(-3) \\
0=-8 x-3 y+57 & 0=8 x+3 y-57
\end{array}
$$

3) Symmetric $\frac{x}{a}+\frac{y}{b}=1 \quad \frac{x}{a}+\frac{y}{19}=1$

$$
\begin{aligned}
x \text {-int: } y & =0 \\
0 & =-\frac{8}{3} x+19 \quad \frac{x}{7.125}+\frac{y}{19}=1 \\
-19 & =-\frac{3}{3} x \\
-19 \div-\frac{8}{3} & =x \\
\frac{57}{8} & =x
\end{aligned}
$$

