Symmetric Form

The equation of an oblique line that does not pass through the origin can be written as ...

$$
\frac{x}{a}+\frac{y}{b}=1
$$

where $a_{\text {is the }} x_{\text {-intercept (zero) and }} b$ is the $y_{\text {-intercept, }}$, and the slope (rate of change) is $\frac{-b}{a}$.

Example: What is the equation of the line whose intercepts are $(5,0)$ and $(0,-4)$?

Example: What is the equation of the line whose $x_{\text {-intercept is }}(-12,0)$ and passes through the point $(6,10.5)$?

$$
\begin{aligned}
& \frac{x}{a}+\frac{y}{b}=1 \longrightarrow \frac{6}{-12}+\frac{10.5}{b}=1 \\
&-0.5+\frac{10.5}{b}=1 \\
& \frac{10.5}{b}=1.5 \\
& \frac{10.5}{1.5}=b \\
& 7=b \quad \text { Answer: } \frac{x}{-12}+\frac{y}{7}=1
\end{aligned}
$$

Example: Draw the graph of $\frac{x}{2}+\frac{y}{-6}=1$.

Converting From One Form to Another

Example: Determine the equation of the line that passes through the points $(3,11) \&(6,3)$ in all three forms.

1) Standard $y=m x+b$
2) General $A x+B y+C=0$
3) Symmetric $\frac{x}{a}+\frac{y}{b}=1$

What are the intercepts of the line whose equation is $\frac{2 x}{3}-\frac{5 y}{4}=1$?

Example: A line's $x_{\text {-intercept is }}-10$ and its $y_{\text {-intercept is }}{ }^{8}$. Determine the equation of the line three ways.
i) Symmetric
2) Standard
3) General

Example: Write the equation $2 x-4 y-5=0$ in symmetric form.

Example: Find the equation of a line that passes through the point $(4,9)$ and is
a) parallel to the line $\frac{x}{2}+\frac{y}{3}=1$.

Example: Find the equation of a line that passes through the point $(4,9)$ and is
b) perpendicular to the line $\frac{x}{5}-\frac{y}{4}=1$.

Example: Determine the equation of the perpendicular bisector of the line segment that join points $(5,8) \&(15,13)$.

