Basic Linear Function

Parameter *m* (rate of change)

The value of m determines the slope, or steepness of the line. The bigger |m| is, the steeper the line.

1)
$$m = \frac{1}{2}$$
 2) $m = 3$

If *m* is positive, then the line is increasing.

If *m* is negative, then the line is decreasing.

3)
$$m = -\frac{2}{3}$$
 4) $m = -4$

Equation of a Line

When we know the y-intercept and the slope we can determine the equation of the line.

Equation of a line:
$$y = mx + b$$
dependent variable

where

 m is the slope or rate of change, and b is the y-intercept or initial value

This form of a line is known as standard or functional form.

Also:
$$f(x) = mx + b$$

Find the Rule

Given two points

Example: Determine the equation of

the line that passes through

the points A(-2, 7) and

B(2, 9).

Step 1: Determine the slope (m)

$$A(-2,7)$$
 $B(2,9)$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{9 - 7}{2 - (-2)}$$

$$= \frac{2}{4} \text{ or } 0.5 \text{ or } 2$$

- Step 2: Determine the value of b, the initial value.
 - -- Choose one of the points, A or B. A(-2,7) B(2,9)

A:
$$x = -2$$
 and $y = 7$
B: $x = 2$ and $y = 9$

-- Fill in x, y and m in the equation and solve for b.

$$y = mx + b$$

$$y = 0.5x + b$$

$$9 = 0.5(2) + b$$

$$9 = 1 + b$$

$$8 = b$$

Step 3: Put your m and b into the equation.

$$y = 0.5x + 8$$

Example: Determine the equation of the line shown

below.

① slope: $m = \frac{3-4}{-4-(-2)}$ $= -\frac{1}{-2}$ $= + \frac{1}{4}$ ② y-int: b = 5

Example: Determine the equation of the line that passes through points K(1,12) and L(9,2).

$$0 m = \frac{12 - 2}{1 - 9}$$

$$= \frac{10}{-8}$$

$$= -\frac{5}{4} \text{ ext}^{-1.25}$$

②
$$12 = -1.25(1) + b$$

 $12 = -1.25 + b$
 $13.25 = b$

$$\int (x) = -1.25x + 13.25$$

Example: Last week, John worked 30 hours and earned \$600. This week, he worked 22 hours and earned \$480. How much will John earn if he works 40 hours next week?

X: time y: salary

This story provides 2 points: (30, 600) and (22, 480).

- 1) Determine m
- 2) Determine b

$$m = \frac{600 - 480}{30 - 22}$$

$$m = \frac{120}{8}$$

$$m = 15$$

$$y = mx + b$$

$$600 = 15(30) + b$$

$$600 = 450 + b$$

$$600 - 450 - 450 + b$$

$$150 = b$$

$$y = 15x + 150$$

John's earnings next week:

Let
$$x = 40$$

 $y = 15(40) + 150$
 $y = 600 + 150$
 $y = 750$

John will earn \$750.

Graphing a Linear Function

Given an equation y = mx + b

Method 1: Make a table of values

Choose a value for x. Calculate the value of y for this x.

Repeat for another two values of x.

Plot the points on the Cartesian plane.

x	У
0	B
10	25
20	20

Each pair of values represents a point. Plot each

point on a Cartesian plane an

connect the points.

Example: y = 2x - 3

x	у
0	m 1
1	1
3	3

b) Method 2: Using the slope and y-intercept y = mx + b

In the equation, b represents the y-intercept, so we already know a point on the graph: (0, b). Plot it on the Cartesian plane.

Next, use the rate of change (or slope) - how it tells us how y moves when x moves - to generate more points.

$$m = \frac{rise}{run}$$
 or $\frac{\Delta y}{\Delta x}$

Example:
$$y = \frac{2}{3}x - 1$$

$$b = -1$$
, so $(0,-1)$ is our first point.

The slope $\frac{2}{3}$ tells us that if x moves 3 places to the right then y should move up 2 places.

Do this, starting at b, to find a second point. Continue the pattern until you have a few points.

Example:
$$y = -0.6x + 4$$

$$b = 4 \implies (0,4)$$

$$m = -0.6 = -\frac{6}{70} - \frac{3}{5}$$

