Linear or First-Degree Function

When we think of the graph of a line we usually consider two things:

- 1. The initial value, or y-intercept the value of y when x = 0.
- 2. The rate of change or slope (m).

The line either increases or decreases. There is a pattern: as the x-values change, the y-values go up or down at a constant rate.

A rate of change is a ratio that compares how much the dependent variable changes as a result of changing the independent variable.

The formula:
$$m = \frac{rise}{run}$$
 or $m = \frac{\Delta y}{\Delta x}$ $\longrightarrow m = \frac{y_2 - y_1}{x_2 - x_1}$

What is the slope of \overrightarrow{AB} ?

What is the slope of the line that passes through points Q(-4,6) and R(11,-1)?

Basic Linear Function

Rule: y = x

x	y

Parameter *m* (rate of change)

The value of m determines the slope, or steepness of the line. The bigger |m| is, the steeper the line.

1)
$$m = \frac{1}{2}$$
 2) $m = 3$

If *m* is positive, then the line is increasing.

If *m* is negative, then the line is decreasing.

3)
$$m = -\frac{2}{3}$$
 4) $m = -4$

Equation of a Line

When we know the y-intercept and the slope we can determine the equation of the line.

Equation of a line:
$$y = mx + b$$
dependent variable

where

m is the slope or rate of change, and b is the y-intercept or initial value

This form of a line is known as standard or functional form.

Also:
$$f(x) = mx + b$$

Find the Rule

Given two points

Example: Determine the equation of the line that passes through

the points A(-2, 7) and

B(2, 9).

Step 1: Determine the slope (m)

$$A(-2,7)$$
 $B(2,9)$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{9 - 7}{2 - (-2)}$$

$$= \frac{2}{4} \text{ or } 0.5$$

Step 2: Determine the value of b, the initial value.

-- Choose one of the points, A or B.
$$A(-2,7)$$
 $B(2,9)$

A:
$$x = -2$$
 and $y = 7$
B: $x = 2$ and $y = 9$

-- Fill in x, y and a in the equation and solve for b.

$$y = mx + b$$

$$y = 0.5x + b$$

$$= 0.5() + b$$

$$= + b$$

$$8 = b$$

Step 3: Put your m and b into the equation.

$$y = 0.5x + 8$$

Example: Determine the equation of the line shown

below.

February 02, 2023

Example: Determine the equation of the line that passes through points K(1,12) and L(9,2).

Example:

Last week, John worked 30 hours and earned $^{\$600}$. This week, he worked 22 hours and earned $^{\$480}$. How much will John earn if he works 40 hours next week?

This story provides 2 points: (30, 600) and (22, 480).

- 1) Determine *m*
- 2) Determine b

$$m = \frac{-}{-}$$

$$m = -$$

$$m = -$$

$$y = 15x + 150$$

John's earnings next week:

Let
$$x = 40$$

 $y = 15(40) + 150$
 $y = 600 + 150$
 $y = 750$

John will earn \$750.

Graphing a Linear Function

Given an equation y = mx + b

Method 1: Make a table of values

Choose a value for x. Calculate the value of y for this x.

Repeat for another two values of x.

Plot the points on the Cartesian plane.

Example: $y = -\frac{1}{2}x + 30$

x	у	Each pair of
		values represent:
		, , , , , , , , , , , , , , , , , , ,
,		a point. Plot each
,		Cartesían plane an
conn	ect the	e points.

Example: y = 2x - 3

x	y

b) Method 2: Using the slope and y-intercept y = mx + b

In the equation, b represents the y-intercept, so we already know a point on the graph: (0, b). Plot it on the Cartesian plane.

Next, use the rate of change (or slope) - how it tells us how y moves when x moves - to generate more points.

$$m = \frac{rise}{run}$$
 or $\frac{\Delta y}{\Delta x}$

Example:
$$y = \frac{2}{3}x - 1$$

b = -1, so (0,-1) is our first point.

The slope $\frac{2}{3}$ tells us that if x moves 3 places to the right then y should move up 2 places.

Do this, starting at b, to find a second point. Continue the pattern until you have a few points.

Example: y = -3x + 5

b =

m =

Example: y = -0.6x + 4

b =

m =

