Radicals are expressions that involve a root sign.
\sqrt{n} is called a radical.
radical sign
$\sqrt{n \quad \text { radicand }}$

Addition and Subtraction

Adding and subtracting radicals is like algebra - they have to be "like terms" - the radicals must match.

Examples: $6 \sqrt{7}-4 \sqrt{7}=2 \sqrt{7}$

$$
\begin{aligned}
& 6 \sqrt{7}-4 \sqrt{7}=2 \sqrt{7} \\
& 5 \sqrt{2}+3 \sqrt{2}=8 \sqrt{2} \\
& \sqrt{3}+2 \sqrt{5}+10 \sqrt{5}=
\end{aligned}
$$

Multiplication and Division
Properties: i) $\sqrt{m} \times \sqrt{n} \Leftrightarrow \sqrt{m \times n}$
2) $\frac{\sqrt{m}}{\sqrt{n}} \Leftrightarrow \sqrt{\frac{m}{n}}$

Example: $4 \sqrt{2} \times 3 \sqrt{6}$

Multiply / divide the coefficients and multiply / divide the radicands. Like terms are not necessary.

$$
\begin{aligned}
4 \sqrt{2} \times 3 \sqrt{6} & =(4 \times 3) \sqrt{2 \times 6} \\
& =12 \sqrt{12}
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& 5 \sqrt{20} \div 3 \sqrt{10}=(5 \div 3) \sqrt{20 \div 10} \\
&=\frac{5}{3} \sqrt{2} \\
& 2 \sqrt{3} \times \underline{6} \sqrt{8} \div 4 \sqrt{12}=3 \sqrt{2} \\
& 3 \sqrt{3 \times 8} \div 12
\end{aligned}
$$

Simplifying Radicals

Many radicals can be simplified.

$$
\text { Example: } \sqrt{27} \text { factors }
$$

i. Break down the radicand into two factors one of which is a perfect square.

$$
\sqrt{27}=\sqrt{9 \cdot 3}
$$

2. Apply the multiplication property of radicals to create a coefficient times a radical. $\sqrt{9} \cdot \sqrt{3}$

Example: $\quad 3 \sqrt{72}$

$$
\begin{aligned}
& 3 \cdot(\sqrt{36 \cdot 2}) \\
& 3(\sqrt{\sqrt{36}} \cdot \sqrt{2}) \quad 3 \cdot 36 \\
& 3(6 \sqrt{2}) \quad 3(\sqrt{9} \cdot \sqrt{8}) \\
& 18 \sqrt{2}<\quad 3 .(3 \sqrt{8})=9 \sqrt{8} \\
& =9 \sqrt{4 \cdot 2} \\
& =9 \sqrt{4} \cdot \sqrt{2} \\
& a \cdot 2 \cdot \sqrt{2}
\end{aligned}
$$

Example: $\quad 4 \sqrt{48}+2 \sqrt{12}$

$$
\begin{aligned}
& \begin{array}{l}
4(\sqrt{16 \cdot 3})+2(\sqrt{4 \cdot 3}) \\
4(\sqrt{16} \cdot \sqrt{3})+2(\sqrt{4} \cdot \sqrt{3}) \\
4 \cdot(4 \sqrt{3})+2(2 \sqrt{3}) \\
16 \sqrt{3}+4 \sqrt{3} \\
\text { match }
\end{array}=20 \sqrt{3}
\end{aligned}
$$

$$
\text { Example: } \begin{gathered}
5 \sqrt{98}+2 \sqrt{200} \\
5 \sqrt{49 \cdot 2}+2 \sqrt{100 \cdot 2} \\
5 \sqrt{49} \cdot \sqrt{2}+2 \sqrt{100} \cdot \sqrt{2} \\
5 \cdot 7 \cdot \sqrt{2}+2 \cdot 10 \cdot \sqrt{2} \\
35 \sqrt{2}+20 \sqrt{2} \\
55 \sqrt{2}
\end{gathered}
$$

Page 15 \#4

Rationalising the Denominator

We do not write expressions with a radical in the denominator.

Example: $\frac{6}{\sqrt{3}} \cdot \frac{}{\sqrt{3}}$

We get rid of the radical in the denominator by a process called rationalising.

Multiply by a unit fraction that will square the denominator.

$$
\begin{aligned}
\frac{6}{\sqrt{3}} \cdot\left(\frac{\sqrt{3}}{\sqrt{3}}\right)=\frac{6 \sqrt{3}}{\sqrt{3.3}} & =\frac{6 \sqrt{3}}{\sqrt{9}} \\
& =\frac{6 \sqrt{3}}{6}=2 \sqrt{3}
\end{aligned}
$$

Rationalise the denominators:

$$
\begin{aligned}
& \text { 1. } \frac{4}{\sqrt{13}} \cdot\left(\frac{\sqrt{13}}{\sqrt{13}}\right)=\frac{4 \sqrt{13}}{(\sqrt{13})^{2}}=\frac{4 \sqrt{13}}{13} \\
& \text { 2. } \frac{5 \sqrt{3}}{3 \sqrt{2}}\left(\frac{\sqrt{2}}{\sqrt{2}}\right)=\frac{5 \sqrt{6}}{3 \sqrt{4}}=\frac{5 \sqrt{6}}{3 \cdot 2}=\frac{5 \sqrt{6}}{6}
\end{aligned}
$$

3. $\frac{5 \sqrt{6}}{12 \sqrt{7}} \cdot\left(\frac{\sqrt{7}}{\sqrt{7}}\right)=\frac{5 \sqrt{42}}{12(\sqrt{7})^{2}}=\frac{5 \sqrt{42}}{12 \cdot 7}=\frac{5 \sqrt{42}}{84}$

Page 17 \# 7

$$
\text { Example: } \frac{5}{\sqrt{3}+\sqrt{6}}\left(\frac{\sqrt{3}-\sqrt{6}}{\sqrt{3}-\sqrt{6}}\right)=\frac{\frac{5 \sqrt{3}}{}-5 \sqrt{6}}{3-\sqrt{18}+\sqrt{18}-6}
$$

When more than i term is in the denominator, we must use conjugates to create a difference of squares.

$$
\frac{5 \sqrt{3}-5 \sqrt{6}}{-3}
$$

