MAS406 <u>Second-Degree Functions</u>

- 1. Determine the equation of the quadratic function associated with each table of values shown below.
 - a)
- $\begin{array}{c|ccc}
 x & y \\
 -1 & -8 \\
 0 & -10 \\
 3 & -8 \\
 5 & 0 \\
 6 & 6
 \end{array}$

b)

X	У
1	-2
2	3
4	7
7	-2
8	-9

- 2. For each of the functions in Question 1, determine...
 - a) f (–3)
 - b) f (9)
- 3. The following table provides information about the first four functions in a series of seconddegree polynomial functions. A pattern is evident in the first four functions and continues in the fifth function.

Function f ₁	The rule of the function f_1 is $f_1(x) = 3(x - 1)^2 - 27$
Function f ₂	The zeros of function f_2 are -3 and 3 . Also, $f_2(2) = -15$
Function f ₃	$f_3(-5) = 21$, $f_3(-1) = -27$ and $f_3(3) = 21$
Function f ₄	$f_4(x) = 3x^2 + 12x - 15$
Function f ₅	?

What is the rule of function f_5 in this series?

4. The following table provides information about the first four functions in a series of seconddegree polynomial functions. A pattern is evident in the first four functions and continues in the fifth function.

Function f ₁	The rule of function f_1 is $f_1(x) = 2(x+3)^2 - 4$
Function f_2	$f_2(-6) = 12$, $f_2(-3) = -6$, and $f_2(0) = 12$
Function f_3	Function f_3 is negative over the interval $[-5, -1]$. The initial value of f_3 is 10.
Function f ₄	$f_4(x) = 2x^2 + 12x + 8$
Function f₅	?

What is the rule of function f_5 in this series?