Finding the Rule ~ Given the Zeros and a Point

What is the equation of the parabola whose zeros are $\stackrel{-10}{=}$ and 20 and passes through the point $(5,40)$?

Given the zeros, use factored form. $\quad f(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right)$

$$
f(x)=a(x+10)(x-20)
$$

\square

$$
\begin{aligned}
& 40=a(5+10)(5-20) \\
& 40=a(15)(-15) \\
& 40=-225 a
\end{aligned}
$$

$$
f(x)=-\frac{8}{45}(x+10)(x-20) \longleftrightarrow \frac{40}{-225}=-\frac{8}{45}=a
$$

Determine the equation of the parabola whose intercepts are $(-3,0),(1,0)$ and $(0,-6) \ldots$ a) ingeneral form
b) in standard form

We have the zeros and a point, so first well find the factored form and then convert.
$f(x)=a(x+3)(x-1)$

$$
-6=a(3)(-1)
$$

$$
-6=-3 a
$$

a) Convert to general

$$
a=2
$$

$$
f(x)=2\left(x^{2}+2 x-3\right)
$$

$$
f(x)=2(x+3)(x-1)
$$

$$
f(x)=2 x^{2}+4 x-6
$$

b) We can use the zeros to find h.

$$
h=\frac{x_{1}+x_{2}}{2}=\frac{-3+1}{2}=-1
$$

Let $x=-1$ to find k.

$$
\begin{aligned}
& f(-1)=(2)(-1+3)(-1-1) \\
& k=2(2)(-2)=-8
\end{aligned}
$$

Standard form

$$
f(x)=2(x+1)^{2}-8
$$

2. As a function of time t, the depth which a beluga whale dives below the surface of the water is given by the rule: $d(t)=\frac{1}{2} t(t-12)$ where $t_{\text {represents the time in seconds and }} d(t)$ the depth in metres. Luke is watching one of these mammals prepare to dive.
a) After how many seconds will the beluga reach its maximum depth?
b) What is the maximum depth reached by the whale?
c) For how many seconds was the beluga lower than 10 m below the surface?

$$
\frac{a\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(\underline{a}\left(t-t_{1}\right)\left(t-t_{0}\right)\right.} d(t)=\frac{1}{2} d(t-12) \quad z e r o s:\{0,12\}
$$

a) After how manytseconds will the beluga reach its maximum depth?

$$
\text { at vertex } \quad h=\frac{0+12}{2}=\frac{12}{2}=65
$$

b) What is the maximum depth reached by the whale?

$$
\begin{gathered}
k d(b)=\frac{1}{2}(6)(k-2) \\
\left.==\frac{1}{3}(6)-6\right) \\
=-18
\end{gathered}
$$

Caroline throws a ball toward a basket located $3 m$ above the ground, as shown in the diagram. The rule associated with this function is $f(x)=-0.2(x-5)^{2}+3.45$

The horizontal distance between Caroline and the location of the basket is 4.5 m . At what height does Caroline
 throw the ball?

$$
f(x)=-0.2(x-5)^{2}+3.45
$$

OLet $y>3$

$$
\begin{aligned}
& 3=-0.2(x-5)^{2}+3.45 \\
& -3.45 \\
& -0.45=-0.2(x-5)^{2} \\
& 2.25=(x-5)^{2} \\
& \pm 1.5=x-5 \\
& \pm 1.5+5=x \\
& \{3.5,6.5\}=x \\
& 6.5>5 \text { S } x=6.5 \\
& \begin{array}{l}
\text { (h) }
\end{array}
\end{aligned}
$$

(2) $x=6.5-4.5$ $=2$
(3) $\operatorname{let} x=2$

$$
\begin{aligned}
f(2) & =-0.2(2-5)^{2}+3.45 \\
& =-0.2(-3)^{2}+3.45 \\
& =-0.2(9)+3.45 \\
& =-1.8+3.45
\end{aligned} \quad 1.65 \mathrm{~m}
$$

