Today, a father is 2 years older than triple his son's age. Five years ago, the product of their ages was 420. How (2) Unknowns ages old is the father now?
(2) 2 Timelines

Dad's age	Present	Past (-s)
Sori's age	$3 x+2$	$3 x-3$

Today, a mother's age is two years more than double her son's age. In ten years, the product of their ages will be 2040. How old are they today?

The Quadratic Formula

The area of this figure is equal to $103.75 \mathrm{~cm}^{2}$.
Determine the aumerical length of each side.

$31 x^{2}+26 x-5=103.75$
$31 x^{2}+26 x-108.75=0$

$$
31 x^{2}+26 x-108.75=0 \quad \begin{aligned}
& m \times n=-3371.25 \\
& m+n=26
\end{aligned}
$$

The quadratic formula provides a solution to any quadratic (second-degree) equation of the form...

$$
a x^{2}+b x+c=0
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example: $a x^{2}+b x+c=0$

$$
\begin{aligned}
& 31 x^{2}+26 x-108.75=0 \\
& x=\frac{-26 \pm \sqrt{\left(26^{2}-4(31)(-108.75)\right.}}{2(31)=6^{2}}=14|6|
\end{aligned}
$$

$$
\begin{gathered}
x=\frac{-26 \pm \sqrt{14161}}{62}=\frac{119}{62} \\
1 \quad x_{1}=\frac{-26+119}{62} \\
x=\frac{93}{62}=1.5 \\
\therefore \quad x_{2}=\frac{-26-119}{62} \\
\therefore x=1.5
\end{gathered}
$$

Example:
Solve $15 x^{2}-2 x-8=0$ fringormula
$x=\frac{-b \pm \sqrt{b^{2}-4 a c^{2}}}{2 a}$

$$
x=\frac{2 \pm \sqrt{(-2)^{2}-4(15)(-8)}}{2(15)}=4-4(15)(-8)
$$

$x=\frac{2 \pm \sqrt{4+480}}{30}$
$x=\frac{2 \pm \sqrt{484}}{30}$
$x=\frac{2 \pm 22}{30}$

$$
x=\frac{2+22}{30}=\frac{24}{30}=\frac{4}{5} \quad \text { or } \quad x=\frac{2-22}{30}=\frac{-20}{30}=-\frac{2}{3}
$$

