Solving Second-Degree Equations

Zero Product Principle - a product of factors is equal to zero if and only if at least one of the factors is equal to zero.

Example: if
$$5 \times \blacksquare = 0$$

We will use this and factoring techniques to solve equations.

Example: Solve
$$x^2 - 10x = 0$$

factor the LHS
$$x(x-10) = 0$$

$$\therefore$$
 either x or $x-10$ must be 0.

So
$$x = 0$$
 or $x - 10 = 0$ $x = 10$

$$x = \{0, 10\}$$

Example: Solve
$$x^2-2x-15=0$$

factor the LHS

$$(x-5)(x+3)=0$$

$$F_1 \cdot F_2=0$$

$$x-5=0 \text{ or } x+3=0$$

$$x=5 \text{ or } x=3$$

$$x=\{-3,5\}$$

Example: Solve
$$-2x^2 - 5x + 3 = 0$$

Factor the LHS
$$-2x^2 - 6x + 1x + 3 = 0$$

$$-2x(x+3) + 1(x+3) = 0$$

$$(x+3)(-2x+1) = 0$$

$$(x+3) = 0 \quad \text{and} \quad (x+3) = 0$$

$$(x+3)(-2x+1) = 0$$

$$(x+3)(-2x+1) = 0$$

Solve:
$$2x^2 - x = 6$$

Make the equation equal to 0, then factor the LHS.

$$\begin{array}{lll}
-12 = m_{1} & 2\sqrt{2} - x - 6 = 0 \\
-1 = m_{1} & 2x^{2} - 4x + 3x - 6 = 0 \\
-4 & 3 & 2x(x - 2) + 3(x - 2) = 0 \\
& (x - 2)(2x + 3) = 0 \\
& x - 2 = 0 \quad \text{or} \quad 2x + 3 = 0 \\
& x - 2 = 0 \quad \text{or} \quad 2x - 3 \\
& x = 2
\end{array}$$

Solve
$$4x^2 - 36 = 0$$

$$(2x-6)(2x+6) = 0$$

$$2x-6=0 | | 2x+6=0$$

$$2x=6 | | 2x=-6$$

$$x=3 | | x=-3$$

$$4x^{2} - 3b = 0$$
 $4x^{2} = 3b$
 $4x^{2} = 3b$
 $4x^{2} = 34$
 $7^{2} = 9$
 $7^{2} = 9$
 $7^{2} = 13$

Solve
$$2x^2 - 50 = 0$$

$$2x^{2} = 50$$

 $X^{2} = 25$
 $X = \sqrt{25} = \pm 5$

$$2(x^{2}-25) = 0$$

$$2(x+5)(x-5) = 0$$

$$X+5=0$$

$$X=-5$$
or
$$X-5=0$$

$$X=5$$

Solve $5x^2 - 35 = 0$

$$5x^2 = 35$$

$$x^{2} = 7$$

$$x = \pm \sqrt{7}$$

$$\therefore x = \left\{-\sqrt{7}, \sqrt{7}\right\}$$

Example: Solve
$$14x^{2} + 28 = 0$$

 $14(\chi^{2} + 2) = 0$
 $\chi^{2} + 2 = 0$
 $\chi^{2} = -2$

You can't calculate the square root of a negative number.

No Real solution.

Example:

Solve
$$10x^2 - 4x - 7 = 4x^2 - 11x + 13$$

$$6x^{2} + 7x - 20 = 0$$
 $6x^{2} - 8x + 15x - 20 = 0$
 $2x(3x - 4) + 5(3x \cdot 4) = 0$
 $(3x - 4)(2x + 5) = 0$
 $3x - 4 = 0$
 $3x - 4 = 0$
 $2x + 5 = 0$
 $3x - 4 = 0$
 $3x$

$$mxn = -120$$

 $mtn = 7$
 -8) $+ 15$

Example: The length of a rectangle is 5*cm* longer than its width. If the area is equal to 150cm² what is the numerical value of the perimeter of

the rectangle?

Perimeter = cm Example: In the figure, \overline{PQ} divides rectangle ABCD into

two quadrilaterals: square APQD and rectangle PBCQ. The area of rectangle ABCD is $120cm^2$

In addition, $m\overline{DQ} = (x)cm$ and $m\overline{QC} = (x+8)cm$.

What is the numerical area of rectangle PBCQ?

