RATIONALEXPRESSIONS

A rational expression is a fraction, $\frac{P}{Q}$, where P and Q are polynomials, and $Q \neq 0$.
Examples: $\frac{3 x^{3}+4 x-8}{x-6}, \frac{5 x^{2}+4}{7}, \frac{10}{x}$
A rational expression is undefined for any values of the variables that cause the denominator to be equal to zero.

$$
\text { Example: } \frac{3 x^{3}+4 x-8}{x-6}
$$

is undefined when x is 6
because $6-6=0$, and we can't divide by 0 .

For what values of the variable are tho following expressions undefined? $\left(\begin{array}{l}x-2=0 \\ (x+2)(x-2)=0\end{array}\right.$

$$
\begin{aligned}
& \text { a) } \frac{9 x^{2}+4 x-7}{x-2} \\
& \xrightarrow{\longrightarrow(x+2)(x-2} \begin{array}{l}
\text { b) } \frac{x-3}{x^{2}-4} \\
x^{2}-4=0
\end{array} \\
& \text { C) } \frac{9}{x^{2}+4} \\
& x^{2}+4=0 \\
& x^{2}=-4 \\
& x=\sqrt{-4} \quad \text { No Renal }
\end{aligned}
$$

These values are called restrictions and must be considered when working with rational expressions.

Simplifying Rational Expressions (Reduce)
Sometimes a rational expression can be simplified if both the numerator and denominator have a common factor. $x^{2}-3 x \xrightarrow{ } x(X-3)$

$$
\begin{aligned}
& \text { denominator, if possible. } \\
& x+3=0 \Rightarrow x=-3 \\
& x-3=0\Rightarrow x-3)(x-3) \\
& x=3
\end{aligned}
$$

We can cancel out the common factor in the numerator and denominator (the division equals 1), but we must state the restrictions that allow us to do so.

$$
\frac{x}{x+3} \text { where } x \neq\{-3,3\}
$$

Simplify:

$$
\begin{aligned}
& \text { a) } \begin{aligned}
& \frac{a^{2}-1}{a+1}=\frac{(a-1)(a+1)}{a+1} \\
&\left.\begin{array}{l}
a+1=0 \\
a=-1
\end{array}\right\} \quad \frac{(a-1)(g+1)}{(a+1)} \\
& a-1, a \neq-1
\end{aligned} \\
&=\begin{array}{l}
a \neq-1
\end{array}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \frac{2 x+10}{1 x^{2}+7 x+10} \cdot \frac{2(x+5)}{(x+2)(x+5)} \\
& \begin{array}{l}
x+2=0 \\
x=-2
\end{array} \quad x \neq\{-5,-2\} \\
& x+5=0 \\
& x=-5 \quad=\frac{2}{x+2}, x \neq\{-5.2\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } \frac{1 v^{2} \overbrace{-7 v}^{m+n} \overbrace{-30}^{m \times n}}{v^{2}=5 v-24} \\
& \frac{(v-10)(v+3)^{m \times n}}{(v+3)(v-8)^{m+n}} \\
& \begin{array}{l}
V+3=0 \\
V-8=0 \\
\left.\frac{V-10}{V-8}, V \neq\{-3,8\}\right\}
\end{array}
\end{aligned}
$$

