d) Factoring a Trinomial

Part 1: The trinomial has the form $a x^{2}+b x+c$.

$$
\text { Example: } 2 x^{2}-3 x-9
$$

"Product and Sum" Method
i. Multiply the coefficient of the first term and the third term $(a \cdot c)$.

$$
2 x^{2}-3 x-9 \longrightarrow 2 \times(-9)=-18
$$

2. Find two numbers $(m \& n)$ whose sum is the coefficient of the second term (b), and whose product is the value found in step $;(a c)$.
$1,-18$
$2,-9$
$3,-6$

$$
\begin{array}{ll}
m+n=-3 \\
m \times n=-18
\end{array} \quad \quad \quad 2 x
$$

$$
2 x^{2}-3 x-9
$$

$$
\begin{aligned}
& m=-6 \\
& n=3
\end{aligned}
$$

3. Rewrite the trinomial, replacing the second term with two new terms whose coefficients are the values found in step 2 .

4. Factor the new polynomial by grouping.

$$
\begin{gathered}
F_{2}^{G C F}(x-3)-\underbrace{\left.2 x^{x-3}-3\right)}_{2 x}+\underbrace{2 x+3)}_{(x-3)(x-3)}+3 x-9 \\
\therefore 2 x^{2}-3 x-9=(x-3)(2 x+3)
\end{gathered}
$$

Example: Factor $3 x^{2}+10 x+8$
(1) $a \cdot c=3 \cdot 8=24$
(2) $\left.\begin{array}{rl}m \times n & =24 \\ m+n & =10\end{array}\right\}+6,+4$
(3) $3 x^{2}+6 x+4 x+8$
(4) $3 x(x+2)+4(x+2)$
$\underset{\sim}{(x+2)(3 x+4)}$

Factor the following polynomials.

1. $2 x^{2}-x-6$

(2) $m \times n=-42(14,-3$

$$
\left.\begin{array}{l}
m \times n=-42 \\
m+n=11
\end{array}\right\}+14,-3
$$

$$
{ }_{36}^{2} \frac{2 x}{4 x^{2}}+\frac{2 \times 2 x \cdot 3}{12 x_{P}+5 \cdot T} \overbrace{}^{3}
$$

(1) $4 \times 9=36$
(2) $\left.\begin{array}{rl}m \times n & =36 \\ m+n & =12\end{array}\right\} 6,6$
(3) $4 x^{2}+6 x+6 x+9$
(4) $2 x(2 x+3)+3(2 x+3)$

$$
\rightarrow(2 x+3)(2 x+3)
$$

(3) $6 x^{2}-3 x+14 x-7$
(4) $3 x(2 x-1)+7(2 x-1)$

$$
(2 x-1)(3 x+7)
$$

Factor:
а) $1 x^{2}-2 x-48$

$$
\begin{gathered}
\text { (2) } \left.\begin{array}{c}
m \times n=-48 \\
m+n=-2 \\
x^{2}+6 x-8 x-48 \\
x(x+6)-8(x+6) \\
\binom{x+6}{=}(x-8) \\
=
\end{array}\right)
\end{gathered}
$$

Factoring a Trinomial

Part 2: The trinomíal has the form $x^{2}+b x+c$.
Example: Factor $x^{2}+17 x+60$.

$$
x^{2}+17 x+60 \Leftrightarrow x^{2}+b x+c \quad(a=1)
$$

1. Find two numbers ($m \& n$) whose sum is equal to the coefficient of the second term (b), and whose product is equal to the value of the third term (c).

$$
\left.\begin{array}{c}
m=5 \\
n=12
\end{array}\right\} \begin{aligned}
& 5+12=17 \\
& 5 \times 12=60
\end{aligned}
$$

2. Create the product of two binomials: the first term in each binomial is x (or whatever variable is used); the second term of each binomial are the two values found in step i.

$$
x^{2}+17 x+60=(x+5)(x+12)
$$

