- d) Factoring a Trinomial
 - Part 1: The trinomial has the form $ax^2 + bx + c$. Example: $2x^2 - 3x - 9$

"Product and Sum" Method

1. Multiply the coefficient of the first term and the third term $(a \cdot c)$.

$$(2x^2 - 3x - 9) \longrightarrow 2 \times (-9) = -18$$

 Rewrite the trinomial, replacing the second term with two new terms whose coefficients are the values found in step 2.

$$2x^2 - 3x - 9 = 2x^2 - 6x + 3x - 9$$

Example: Factor
$$3x^{2} + 10x + 8$$

 $\bigcirc a \cdot c = 3 \cdot 8 = 24$
 $\bigotimes m \times n = 24$
 $\implies h + n = 10$
 $3x^{2} + 6x + 4x + 8$
 $3x^{2} + 6x + 4x + 8$
 $3x(x + 2) + 4(x + 2)$
 $(x + 2)(3x + 4)$

Factor the following polynomials.

1.
$$2x^{2} - x - 6$$

2. $4x^{2} + 12x + 9$
3. $6x^{2} + 11x - 7$
(a) $6x^{2} + 12x + 9$
(b) $4x^{2} + 3b^{2} + 6x^{2} + 12x^{2} + 9$
(c) $4x^{2} + 3b^{2} + 6x^{2} + 9$
(c) $4x^{2} + 6x + 6x^{2} + 9$
(c) $4x^{2} + 6x + 6x^{2} + 9$
(c) $4x^{2} + 6x^{2} + 6x^{2} + 9$
(c) $4x^{2} + 12x^{2} + 9$
(c) $4x^{2} + 12x^{2} + 9$
(c) $4x^{2} + 12x^{2} + 12x^{2} + 9$
(c) $4x^{2} + 12x^{2} +$

$$\begin{array}{c} 0 & |x-48 = -48 \\ \hline actor: \\ a) [x^{2} - 2x - 48 \\ \hline b) [x^{2} - 5x - 14 \\ \hline c) [x^{2} - 7x + 2x - 14 \\ \hline c) [x^{2} - 7x + 2x - 14 \\ \hline c) [x^{2} - 7x + 2x - 14 \\ \hline (x^{2} - 7x + 2x + 2x - 14 \\ \hline (x^{2} - 7x + 2x + 2x - 14 \\ \hline (x^{2} - 7x + 2x - 14 \\$$

Factoring a Trinomial

Part 2: The trinomial has the form $x^2 + bx + c$.

Example: Factor $x^2 + 17x + 60$.

$$x^2 + 17x + 60 \Leftrightarrow x^2 + bx + c \quad (a = 1)$$

1. Find two numbers (m & n) whose sum is equal to the coefficient of the second term (b), and whose product is equal to the value of the third term (c). m = 5n = 12 $5 \times 12 = 60$ 2. Create the product of two binomials: the first term in each binomial is x (or whatever variable is used); the second term of each binomial are the two values found in step 1.

$$x^2 + 17x + 60 = (x+5)(x+12)$$