Factoring Polynomials

To factor a polynomial is to write it as a product.
Example: $5 x^{2}+10 x$ can be written as $5 x(x+2)$.
a) Removing the Greatest Common Factor

A common factor divides evenly into each term of the polynomial.
Example: Factor $4 a b+6 b^{2} \Rightarrow 4 a b+6 b^{2}=F_{1} \times F_{2}$
i) Determine the GCF for the coefficients and the variables.
$4 \dot{4}$
2 is the GCF of 4 and 6 .
$\left.b \dot{b} b^{2} \quad \begin{array}{l}b \text { is the GCF of } a b \text { and } b^{2} \text {. (alloy hos the } \\ \text { small (lest poo } x^{2}\end{array}\right)$
$\therefore 2 b$ is the GCF of the polynomial (and the first factor).
ii) Divide the polynomial by the GCF (to get the second factor).

iii) Write the polynomial as the product of the two factors.

$$
\therefore 4 a b+6 b^{2}=2 b(2 a+3 b)
$$

Example: Factor $G C F=3 x y^{2}$

PI
$12 x^{2} y^{3}-27 x y^{2} z$

$F_{2}: 4 x y-9 z$
$3 x y^{2}(4 x y-9 z)$
3. Factoring Polynomials. notebook

Example:

$$
\begin{gathered}
\text { Factor } 24 x^{3} y^{2}-8 x y^{3}+32 x^{2} y^{2} z^{2} \\
G C F=8 x y^{2} \frac{24 x^{3} y^{2}-8 x y^{3}+32 x^{2} y^{2} z^{2}}{8 x y^{2}} \\
3 x^{2}-y+4 x z^{2} \\
8 x y^{2}\left(3 x^{2}-y+4 x z^{2}\right)
\end{gathered}
$$

3. Factoring Polynomials. notebook

Example:

$$
\begin{aligned}
& \text { Factor } 18 a^{2} b^{3} c \oplus 27 a b^{2} c^{3} \oplus 45 a b c \ominus 36 a^{4} b^{5} c^{6} \\
& 9 a b c\left(2 a b^{2}+3 b c^{2}+5-4 a^{3} b^{4} c^{5}\right) \\
& \text { gif } \\
& F_{2}
\end{aligned}
$$

Factor each of the following:
a)

$$
\begin{aligned}
& 21 x y-28 x y z=7 x y(3-4 z) \\
& 6 C F=7 x y \\
& \frac{21 x y-28 x y z}{7 x y}=3-4 z
\end{aligned}
$$

b) $18 a^{2} b+30 a b^{2} c^{3}$ $6 a b\left(3 a+5 b c^{3}\right)$
c) $\widetilde{3(2 d-1)}+\overbrace{\text { GCF }}^{d(2 d-1)}=(2 d-1)(3+d)$

d)

$$
\begin{aligned}
& \frac{(b-4)(b+2)+(b-5)(b+2)}{(b+2)=6 c f} \\
& \frac{(b-4)(b+2)+(b-5)(b+2)}{(b+2)} \\
& (b-4)+(b-5)=2 b-9 \\
& (b+2)[(b-4)+(b-5)]=(b+2)(2 b-9)
\end{aligned}
$$

