Part II: Two - Variable Statistics - Correlation

Statistical studies often involve more than one variable. We are interested in knowing if there is a relationship between the two.

Example: A person's age and the time spent using a mobile phone.

When the data is quantitative (numbers), the variables can be written as an ordered pair (x, y) and graphed on a Cartesian plane (called a scatterplot).

Correlation is the study and description of the relationship (if any) that exists between the variables.

A) Qualitative Interpretation of Correlation

Data can be organised and displayed in a scatterplot (Cartesian plane) or a contingency table.

By looking, we can describe the correlation – the direction, and the intensity (or strength) of the relation between the variables.

Direction: If both variables move in the same direction

(increase together or decrease together),

then the direction is positive.

If both variables move in opposite directions, then the direction is negative.

Intensity: Strength may be categorised as...

Zero, weak, moderate, strong or perfect.

Since we are doing linear correlation, the relationship is stronger the more the graph resembles a straight line.

B) Quantitative Interpretation of Correlation

The correlation will be represented by a number, called the correlation coefficient.

This coefficient will range from -1 to +1.

Its symbol is r.

r	Meaning	
Near 0	Zero correlation	
Near ± 0.5	Weak correlation	
Near ± 0.75	Moderate correlation	
Near ± 0.87	Strong correlation	
Near ± 1	Perfect correlation	

Interpreting a Correlation

A strong correlation indicates that there is a statistical relationship between two variables.

It does not, however, explain the reason for the relationship or its nature.

There are other things to consider...

Interpretation	Example
 The link between two variables can be one of cause and effect: that is when with one of the variables has a direct effect on the other. In such cases, the correlation is perfect and the relation between the two variables is defined by a rule. 	The correlation between altitude and temperature is perfect since the temperature varies in direct relation to altitude.
 The correlation between two variables can be significant without the two variables being directly linked to each other. They can both depend on a third variable which, as it varies, generates variations for the first two variables. 	In the summer, it may seem that there is a strong correlation between the number of ice cream cones sold and the number of air conditioning units sold in a given city while in fact these two variables depend on another variable, is, the temperature.
 Considering a correlation as being linear while another model would be more appropriate. 	The population growth of a major city can be studied according to a linear correlation. However, using an exponential model would be more appropriate.
 It sometimes may happen that there is a correlation between two variables only over a given interval. 	Over the interval [5, 10] years, the correlation between a person's age and his or her height is linear. However, before and after this interval, the linear model is not the best fit.
 A two-variable distribution may include outlier data, notably due to manipulation or measurement errors. 	The degree of precision of the instrument used during data collection is poor.