Exponential Function

Apopulation of penguins doubles every 3 years.
If a zoo starts with 4 penguins, then how many penguins will they have in 12 years?

We started with 4.
That doubled to 8;
then doubled to 16;
then doubled to 32;
then doubled to 64 .

This is an example of an exponential function.

$$
f(x)=a(\text { base })^{x} \text { or } f(x)=a c^{x}
$$

There are 3 parts to an exponential function. We call them (usually)...
i) start
2) keep
3) time

- Start is the value you have at the beginning.
- Keep is how much of the original amount you have (as a percent) after each time period.

When the amount gets bigger (growth), the keep value is usually ($1+$ rate of growth).
When the amount gets smaller (decay), the keep value is usually (1 - rate of decay).
*** Rate must be converted to a decimal *** If the value doubles or triples, then the keep is 2 or 3 , etc.

- Time is the number of periods that take place (for example: hours, days, months or years)

Example:

grows

My painting is worth $\$ 5200$. It appreciates at an annual rate of 4\%. What will it be worth in 5
years?

$$
\text { use } y=a c^{x}
$$

\wedge

start $(a)=5200$ this is the value now

y^{x}
$\underline{\text { keep }}$ base $=1+0.04=1.04$
time $(x)=5$
$y=$ value
$y=5200(1.04)^{5}$
$y=6326,60$

Example: A couple invests $\$ 5000$ for their
\qquad grand-child's education. It will earn 5\% interest each year. What will the investment be worth in 17 years?
use

$$
\left.\begin{array}{l}
y=a c^{x} \\
\text { start }=a=5000 \\
\text { keep }=c=1+0.05=1.05 \\
\text { tim: } x=17
\end{array}\right\} \begin{aligned}
y & =5000(1.05)^{17} \\
& =11460.09
\end{aligned}
$$

Example: Shanía buys a $\$ 24780$ car. It depreciates by 12% per year. What will it be worth in 6 years?

$$
\begin{aligned}
& \left.\left.\left.\begin{array}{l}
\text { years? } \\
\text { stat }=a=24780 \\
\text { keep }=c=1-0.12=.88 \\
x=\text { time }=6
\end{array}\right\} \begin{array}{rl}
y & =24780(.88)^{6} \\
=\$ 11507.93
\end{array}\right\} \begin{array}{l}
\text { no }(0,0)
\end{array}\right\} \text { decay }
\end{aligned}
$$

Example: Karl bought a car 4 years ago. It has depreciated at a rate of 5% each year since then. Today it is worth \$26 064.20. How

$$
\begin{aligned}
& \left.\begin{array}{l}
y=26064.20 \\
c=1-0.05=0.95 \\
x=4 \\
a=? \quad y=a c^{x} \\
26004.20=a(.95)^{4} \\
26064.20=0.845 a \\
\frac{26064.20}{0.8145}=a \\
32000=a
\end{array}\right\}
\end{aligned}
$$

Example: A strain of bacteria triples every hour. If there are 50 bacteria in the lab now, then how long will it take for the culture to grow to 10000 bacteria?

$$
\begin{array}{ll}
x & 4.81 \\
y & 10.91 \\
x=4.83 \\
x=10 & 080
\end{array}
$$

2. Exponential function. notebook

Finding the Rule

1) Given the initial value and a point.

