Function Notation - is a way of writing the rule of a function. We use f(x) (or g(x), or h(x), etc.) in the equation instead of y.

e.g.
$$y = 3x^2$$
 becomes $f(x) = 3x^2$

Why? It lets us know that a relation is a function.

We can show a point on the graph.
e.g.
$$f(4) = 40$$
 means that when $x = 4$ then
$$y = 40$$
, or the point $(4,40)$.

Example: If f(x) = 2x - 6, determine f(4).

let
$$x = 4$$

$$f(4) = 2(4) - 6$$

$$f(4) = 8 - 6$$

$$f(4) = 2$$

Function Parameters

- Every "family" has a parent (or basic) function the simplest form of that function.
- We transform a function (or make a new member of the family) by changing certain values called parameters.
- We consider the parameter $\frac{a}{2}$
- In a basic function, a = 1

Second-degree Function

• AKA: Quadratic Function $f(x) = ax^2$

$$f\left(x\right) = ax^2$$

Basic Function:

$$f(x) = x^2$$

x	y
-2	4
-1	1
0	0
1	1
2	4

Summary:

As a gets closer to zero, the function moves towards

the x-axis (flattens out) and we say it is compressed.

As a gets farther from zero, the function moves away

2, 5 7.1 > 5

from the x-axis (gets thinner) and we say it is stretched.

If a is positive, then the function is above the x-axis.

 \int If a is negative, then the function is below the x-axis.

Example: Given the function $y = 3x^2$, find...

$$y = 3(-2)^{2}$$

= 3(4)

b) the x-coordinate of the point
$$(x, 48)$$

let $y = 48$
 $48 = 3x^2$
 $\div 3$
 $16 = x^2$
 $\pm \sqrt{16} = x$

Finding the Rule of a Second-degree Function

• Given: a point on the curve.

• Given: a table of values.

Periodic Function A periodic function is one whose

graph shows a pattern that is repeated over and over again at regular intervals.

The length of the pattern (measured by the horizontal axis) is called the period of the function.

Period = 6

We can use the period to predict other points.

Example: Given the following function, ...

- a) Determine the period.
- b) Determine

$$f(-15)$$
 y if **x**=-15

i)
$$f(-15)$$
 y if **x=-15 y=3**
ii) $f(31)$ **x=31 y=? y=4**