7) A carpenter places two nails on a rectangular piece of wood. Each nail is placed 20 cm
from each of the shorter edges.

These shorter edges are 60 cm long.
The carpenter uses these nails as focal points to draw the largest possible ellipse on the rectangular plane.
a) Determine the equation of the ellipse. $\quad \begin{array}{r}c=a-20 \\ a=c+20\end{array}$ $b=30$

$900+(a-20)^{2}=a^{2}$
$900+\left(a^{2}-40 a+400\right)=a^{2}$

$$
\begin{aligned}
&+\left(a^{2}-40 a+400\right)=a^{2} \\
& x^{2}-40 a+1300=x^{2} \\
&-40 a+1300=0
\end{aligned} \quad \begin{aligned}
& a=32.51 \\
& \frac{x^{2}}{1056.25}+\frac{y^{2}}{900}=1
\end{aligned}
$$

b) Determine the area of the piece of plywood.

c) If the area of an ellepse is $A=\pi a b$, then how much wod is unuoed?

$$
\begin{aligned}
& \text { is unuoed: } \\
& \text { Ellipse } A: \pi \cdot(32.5)(30)=3063.05 \mathrm{~cm}^{2} \\
& \text { Unuod }=3900 \mathrm{~cm}^{2}-3063.05 \mathrm{~cm}^{2} \\
& 836.95 \mathrm{~cm}^{2}
\end{aligned}
$$

Determine the centre of the following ellipse:

$$
4 x^{2}+49 y^{2}-16 x+294 y+261=0
$$

Ellipses and Inequalities

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1
$$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}<1
$$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \geq 1
$$

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \geq 1$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}>1
$$

