General to Standard Form

Example: Find the centre and radius of the circle.

The centre and radius are found in the standard form

$$
\underbrace{(x-h)^{2}}+(y-k)^{2}=r^{2}
$$

Rearrange the equation so that the ${ }^{x}$ terms and y terms are together and the constant is on the right hand side.

$$
\text { ₹ } \underbrace{x^{2}-4 x}+\underbrace{y^{2}+2 y}=11
$$

Create two perfect square trinomial on the LHS by
completing the square. $\quad(x+n)^{2}=x^{2}+\frac{(2 n x}{7}+n^{2}$

Factor the two trinomial on the LHS and simplify the RUS. $\begin{array}{cc}x^{2}-4 x+4 & y^{2}+2 y+1 \\ (x-2)^{2}\end{array}$

$$
\begin{gathered}
(x-2)^{2}+(y+1)^{2}=16 \\
h=2 \quad r_{0}=-\sqrt{h}
\end{gathered}
$$

Centre: $(2,-1)$
Radius: 4

Convert

$$
x^{2}+y^{2}+12 x-8 y+47=0
$$

$$
x^{2}+12 x+36+y^{2}-8 y+16=-47+36+16
$$

$$
(x+6)^{2}+(y-4)^{2}=5
$$

$$
\begin{gathered}
x^{2}+y^{2}-5 x-16 y+60=0 \\
x^{2}-5 x+y^{2}-16 y=-60 \\
-5 \div 2=-2.5 \quad-16 \div 2=-8 \\
(-2.5)^{2}=6.25 \quad(-8)^{2}=64
\end{gathered}
$$

$$
\begin{aligned}
& x^{2}-5 x+6.25+y^{2}-16 y+64=-60+6.25+64 \\
& x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& x+6.25+y-(y-8)^{2}=10.25 \\
& (x-2.5)^{2}+(y)
\end{aligned}
$$

Find the equation of the circle whose centre is the same as $x^{2}+y^{2}-10 x-1=0$, but passes through $P(2,-3)$.
(1) Fin
(1) Find the centre.

$$
\begin{aligned}
& \begin{array}{ll}
(x-5)^{2} & x^{2}-10 x+y^{2}=1 \\
-10 \div 2=-5 \\
0 h=5 & (-5)^{2}-25 \\
(x-5)^{2}+y^{2}=
\end{array} \quad C(5,0) \\
& x=2 \quad y=-3 \quad(2-5)^{2}+(-3)^{2}=r^{2} \\
& (-3)^{2}+(-3)^{2}=18
\end{aligned}
$$

(St.)

$$
\begin{aligned}
& (x-5)^{2}+y^{2}=18 \\
& x^{2}-10 x+25+y^{2}=18
\end{aligned}
$$

gen: $x^{2}+y^{2}-10 x+7=0$

Find the equation of the circle
$x^{2}+y^{2}+12 x-10 y-2=0$
after it has undergone a translation of $t(-6,1)$.

$n+-6$
$k+1$

$\Rightarrow \frac{(x+12)^{2}+(y-6)^{2}=63}{\infty}$

Tangents to Circles

- A tangent line is a line that shares only one point in common with the circle.
- A tangent line is perpendicular to the radius of the circle at the point of contact.

