Determine the vertex of the function

$$
\begin{aligned}
& y=5 x^{2}-30 x+54 \\
& \left.\begin{array}{l}
-6 \div 2=-3 \\
(-3)^{2}=9 \\
\text { add lublucta }
\end{array}\right\} \quad y=5\left(x^{2}-6 x\right)+54 \\
& \text { add/subbract } \xrightarrow{\text { a }} y=5\left(x^{2}-6 x+9-9\right)+54 \\
& y=5\left(\left((x-3)^{2}-9\right)+54\right. \\
& y=5(x-3)^{2}-45+54 \\
& y=5(x-3)^{2}+9 \\
& V(3,9)
\end{aligned}
$$

Determine the vertex of the function $f(x)=-x^{2}+8 x-5$

Using formulas

$$
h=\frac{-b}{2 a} \quad \text { and } k=\frac{4 a c-b^{2}}{4 a} \quad \text { or } k=f(h)
$$

$f(x)=-\underset{a}{-1} x^{2}+\underset{b}{c}$
$h=\frac{-b}{2 a}=\frac{-8}{-2}$
$k=\frac{4 a c-b^{2}}{4 a}=\frac{\overbrace{4(-1)(-5)-(8)^{2}}^{20}-64}{-4}$
$h=+\frac{8}{2}=4$

$$
k=\frac{20-64}{-4}=\frac{-44}{-4}=11
$$

$\therefore V(4,11)$

What is the vertex of the function $f(x)=\begin{gathered}a \\ =5\end{gathered} x^{2}-3 x+11$?

$$
\begin{aligned}
& h=\frac{-(-3)}{10}=\frac{3}{10}=0.3 \begin{array}{c}
h=-\frac{b}{2 a} \\
k=f(h) \longrightarrow \\
k=\frac{4 a c-b^{2}}{4 a}
\end{array} \\
& k=f(0.3)=5(0.3)^{2}-3(0.3)+11 \\
& k=5(0.09)-0.9+11 \\
& k=0.45-0.9+11 \\
& k=10.55=\frac{211}{20}
\end{aligned}
$$

$\therefore V(0.3,10.55)$

Write $f(x)=\frac{2}{3}(x-6)^{2}+1$ in general form.

$$
\begin{aligned}
& f(x)=\frac{2}{3}(x-6)^{2}+1 \\
& f(x)=\frac{2}{3}\left(x^{2}-12 x+36\right)+1 \\
& f(x)=\frac{2}{3} x^{2}-8 x+24+1 \\
& f(x)=\frac{2}{3} x^{2}-8 x+25
\end{aligned}
$$

$W_{\text {rite }} f(x)=-0.5 x^{2}+7 x-25$
in standard form.
(1) complecling the square

$$
f(x)=-0.5\left(x^{2}-14 x\right)-25
$$

(2) $\quad \underline{0}=-0.5 \quad h=\frac{-7}{-1}=7$

$$
f(x)=-0.5(x-7)^{2}-0.5
$$

$$
\begin{aligned}
k & =\frac{4(-0.5)(25)-(7)^{2}}{4(-0.5)} \\
k & =\frac{50-49}{-2} \\
& =-\frac{1}{2} \text { or }-0.5
\end{aligned}
$$

Provide a study of the function $f(x)=\frac{-4}{a^{2}} x^{2}+7 x-3$

Dom:

Min: None
Positive: $[0.75,1]$
Negative: $]-\infty, 0.75] \cup[1,+\infty[$

$$
\begin{aligned}
& \text { let } y=0 \quad 0=-4 x^{2}+7 x-3 n=12 \\
& x=\frac{-7 \pm \sqrt{49-4(-14 x-3)}}{-8} \\
& x=\frac{-7 \pm \sqrt{11}}{-8} \Rightarrow \frac{-7 \pm 1}{-8}
\end{aligned}
$$

Sally realises that the amount of money in her bank account follows the trend $f(x)=16 x^{2}-160 x+450$, where x is the number of months gone by since December $31^{\text {st }}$. This trend applies for $x \in[0,12]$.
a) How much money did she have at the beginning of this year? Time $=0 \Rightarrow \begin{gathered}\text { initial } \\ \text { value }\end{gathered}$ aka y-int $=\$ 450$
b) What was the most money she had in her account this year? Not the vertex $b / \mathrm{c} a^{+}$U check $x=12 \quad f(12)=16(144)-160(12)+450=\$ 834$
c) How much money did she have in October?

October $=$ month 10 let $x=10$

$$
\begin{aligned}
f(10) & =16(100)-160(10)+450 \\
1 & =450
\end{aligned}
$$

The rule of correspondence $h(t)=-8 t^{2}+32 t \pm 1$ describes the relation between the height, $h(t)$ in metres, of a baseball and the time, t in seconds, elapsed since it was hit.
a) How long does the ball stay in the air?

$$
h(t)=-8 t^{2}+32 t+1
$$

$$
\begin{aligned}
& \text { let } h(t) \text { or } y=0 \\
& 0=-8 t^{2}+32 t+1 \rightarrow \text { Guadform } t \\
& t=\frac{-32 \pm \sqrt{1024-4(-8)(1))^{\prime}}}{-16} \\
& t=\frac{-32 \pm \sqrt{1056}}{-16} \\
& =\frac{-32 \pm 32.5}{-16}
\end{aligned}
$$

