Determining the Solution. Set of a Linearlnequality

A local swimming pool uses a mixture of chlorine and bromine to purify the water. A litre of chlorine costs $\$ 10$ and a litre of bromine costs $\$ 16$. The pool manager buys a total of at least $\$ 240$ worth of these products.

1. Variables:
2. Constraints:
$x: \# \rho<g C l$
$y: \# f<g B r$

$$
\begin{gathered}
10 x+16 y \geq 240 \\
\left.\begin{array}{c}
x \geq 0 \\
y \geq 0
\end{array}\right\} \text { Quadrant } 1
\end{gathered}
$$

1. Graph the line. Recall that if the inequality includes the equalsign, the line is drawn solid, but for a strict inequality, the line is broken. $10 x+16 y=240$

2. Choose a point. Test the point in the inequati, test $\begin{aligned}(0,0) \quad 10(0)+16(0) & \geq 240 \\ 0 & \geq 240\end{aligned}$ Fuse

Example: Graph the solution set of the inequality

Graph: $5 x+2 y=12$

$$
-\frac{5}{2} \text { or } \frac{5}{2}
$$

$$
\begin{aligned}
& \frac{2 y}{2}=-\frac{5 x}{2}+\frac{12}{2} \\
& y=-\frac{5}{2} x+6
\end{aligned}
$$

$$
5 x+2 y<\underbrace{12} \text { broken }
$$

Test $(0,0) \Rightarrow 0+0<12$
$0<12$ True

Systems of L Linear Inequalities

Solving a system of linear inequalities means finding all the points that satisfy all the inequalities.

Example:
Determine the solution set of the following system.

$$
\begin{aligned}
& y>-x \\
& y \leq x
\end{aligned}
$$

Test $(0,5)$

Test (1,2)

$$
\begin{aligned}
& (1,2) \\
& 2 \leq 1
\end{aligned} \text { folse }
$$

Graph the following system of inequalities

The figure created by the solution set of all the inequalities is called the polygon of constraints.

Example: A municipal garden grows red roses and white roses. There are most 400 roses in total] The number of red roses increased by 80 is greater than twice the number of white roses.
Dribbles Graph the solution set, (2) Constraints
x : "op red roses
y : \#of whteroses $\left\{\begin{array}{l}-x+y \leq 400 \\ x+80>2 y \\ x \geq 0 \\ y \geq 0 \Rightarrow Q_{1}\end{array}\right.$

Not a polygon of constraints (Unbound).

