$$
h(x)=2.75(x-10)^{2}-11
$$

Dom:

Ran:

Negative: $[8,12]$

Example: The elevation of a firework was measured from the time of launch until it exploded. Its trajectory can be described by the function $(43,93)$
$h(t)=-5(t-4.3)^{2}+93$
a) What was the maximum height reached by this firework? \qquad : 즐
b) When was the maximum height achieved? 4.3 s h
c) At what height was the firework launched?
d) How many seconds after launch did the the firework explode if its height was $90.55 \mathrm{~m}_{\text {? }}$

$$
\begin{aligned}
& h(t)=-5(t-4.3)^{2}+93 \\
& \text { let } y=90.55 \\
& 90.55=-5(t-4.3)^{2}+93 \\
& \text { - } 93 \\
& -2.45=-5(t-4.3)^{2} \\
& \div 5 \div-5 \\
& 0.49=(t-4.3)^{2} \\
& \pm \sqrt{0.19}=t-4.3 \\
& \pm 0.7=t-4.3 \\
& \text { (1) }-0.7+4.3=t
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } 0.7+4.3=t \\
& 3.6 s=t \\
& 5 s t \\
& 3.6 s \text { if before maximum } \\
& \text { or } 5 \mathrm{~s} \text { if after maximum }
\end{aligned}
$$

Example: A baseball is struck at a height of 1.1 m above the ground. Three seconds later, it reaches it vertex maximum height of 45.2 m . The $x=$ time height of the ball's trajectory is a second
$\boldsymbol{y}=$ height degree function of time
Determine the rule (equation) that represents this situation.

$$
V(3,45.2) \quad P(0,1.1)
$$

$$
f(x)=\frac{a(x-h)^{2}+k}{\text { vertex }}
$$ - point

Weknow: 1. Vertex

> 2. Point
$V(3,45.2)$

Canfind: Equation

$$
\begin{aligned}
& f(\mathbf{x})=a(\mathbf{x}-h)^{2}+k \\
& f(\mathbf{x})=a(\mathbf{x}-3)^{2}+45.2 \\
& 1.1=a(0-3)^{2}+45.2 \\
& 1.1=a(-3)^{2}+45.2 \\
& 1.1=9 a+45.2 \\
& -45.2 \\
& -4.9 .1=9 a^{-45.2} \\
& -4.9=a^{-9} \\
& \therefore f(\mathbf{x})=-4.9(\mathbf{x}-3)^{2}+45.2
\end{aligned}
$$

$y=?$
a) What is the ball's height after $2 \begin{gathered}x=2 \\ \text { seconds? }\end{gathered}$

$$
\begin{aligned}
& f(x)=-4.9(x-3)^{2}+45.2 \\
& \text { let } x=2 \\
& f(2)=-4.9(2-3)^{2}+45.2 \\
& f(2)=-4.9(-1)^{2}+45.2 \\
& f(2)=-4.9+45.2 \\
& f(2)=40.3
\end{aligned}
$$

The ball's height is 40.3 m .
b) At what time would a player catch the ball $\xlongequal{2.2 m} \quad \begin{aligned} & \text { height }=y \\ & \end{aligned}$ above the ground?

$$
f(x)=-4.9(x-3)^{2}+45.2
$$

$$
\text { let } y=2.2
$$

$$
\begin{array}{r}
2.2 \\
45.2
\end{array}=-4.9(x-3)^{2}+45.2
$$

$$
-43=-4.9(x-3)^{2}
$$

$$
8.78 \approx(x-3)^{2}
$$

$$
\begin{aligned}
\pm 2.96 \approx \mathfrak{x}-3 \longrightarrow \text { 1) } 2.96 & =\mathfrak{x}-3 \\
5.96 & =\mathcal{x}
\end{aligned}
$$

The player catches the ball after 5.96 seconds.
c) If no one catches the ball, when will it hit the

$$
\begin{aligned}
& \text { grey }=\text { ground? } \\
& f(\mathbf{x})=-4.9(\boldsymbol{x}-3)^{2}+45.2 \\
& \text { let } y=0
\end{aligned}
$$

The ball hits the ground after approximately 6.04 s .
d) What is the domain and range of this situation?
$x\left(t_{\text {in }}\right)$
y (hight

Range: $[0,45.2]_{\mathrm{m}}$

