Rationalising the Denominator

We do not write expressions with a radical in the denominator.

Example: $\frac{6}{\sqrt{3}}$

We get rid of the radical in the denominator by a process called rationalising.

Multiply by a unit fraction that will square the denominator.

$$
\begin{aligned}
& \frac{6}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\
& \frac{6 \sqrt{3}}{3}=2 \sqrt{3}
\end{aligned}
$$

Rationalise the denominators:

1. $\frac{4}{\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}}=\frac{4 \sqrt{13}}{13}$
2. $\frac{5 \sqrt{3}}{3 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{5 \sqrt{6}}{3 \cdot 2}=\frac{5 \sqrt{6}}{6}$

$$
\text { Example: } \frac{5}{\sqrt{3}+\sqrt{6}} \cdot \frac{\sqrt{3}-\sqrt{6}}{\sqrt{3}-\sqrt{6}}
$$

When more than 1 term is in the denominator, we must use conjugates to create a difference of squares.

$$
\begin{aligned}
\frac{5 \cdot(\sqrt{3}-\sqrt{6})}{\sqrt{3}+\sqrt{6})(\sqrt{3}-\sqrt{6})}=\frac{5 \sqrt{3}-5 \sqrt{6}}{(\sqrt{3})^{2}-(\sqrt{6})^{2}} & =\frac{5 \sqrt{3}-5 \sqrt{6}}{3-6} \\
& =\frac{5 \sqrt{3}-5 \sqrt{6}}{-3}
\end{aligned}
$$

OR
$\frac{5 \sqrt{6}-5 \sqrt{3}}{3}$

1. Radicals.notebook

$$
\text { Example: } \begin{aligned}
& \frac{(2 \sqrt{5}+3 \sqrt{2})\left(\frac{2 \sqrt{2}+\sqrt{3})}{2 \sqrt{2}-\sqrt{3}} \cdot \frac{2 \sqrt{2}+\sqrt{3}}{}\right.}{4.2} \begin{aligned}
& \frac{4 \sqrt{10}+2 \sqrt{15}+6 \sqrt{4}+3 \sqrt{6}}{4 \sqrt{4}-\sqrt{9}} \\
= & \frac{4 \sqrt{10}+2 \sqrt{15}+3 \sqrt{6}+12}{8-3} \\
= & \frac{4 \sqrt{10}+2 \sqrt{15}+3 \sqrt{6}+12}{5}
\end{aligned} \\
&=
\end{aligned}
$$

Rationalise the denominators:

1. $\frac{3}{2 \sqrt{5}+\sqrt{6}} \cdot \frac{2 \sqrt{5}-\sqrt{6}}{2 \sqrt{5}-\sqrt{6}}=\frac{6 \sqrt{5}-3 \sqrt{6}}{20-6}=\frac{6 \sqrt{5}-3 \sqrt{6}}{14}$
2. $\frac{4 \sqrt{10}+2 \sqrt{3}}{3 \sqrt{2}-\sqrt{15}} \cdot \frac{3 \sqrt{2}+\sqrt{15}}{3 \sqrt{2}+\sqrt{15}}=\frac{12 \sqrt{20}+4 \sqrt{150}+6 \sqrt{6}+2 \sqrt{25.6}}{18-15}$

$$
=\frac{12(2 \sqrt{5})+4(5 \sqrt{6})+6 \sqrt{6}+2(3 \sqrt{5})}{3}
$$

$$
=\frac{30 \sqrt{5}+26 \sqrt{6}}{3}
$$

