- **1.** For each of the following parabolas with vertex V(0, 0), determine

 - 1. the concavity. 2. the coordinates of the focus.
- 3. the equation of the directrix.

- a) $x^2 = 6y$
- **b)** $x^2 = -4v$
- c) $v^2 = -12x$ 1. To the left
- d) $v^2 = 8x$

- 1. Upwards 2. F(0; 1.5)
- 2. F(0, -1)

1. Downwards

- 2. F(-3, 0)
- 1. To the right 2. F(2, 0)

- 3. y = -1.5
- 3. y = 1
- 3. x = 3
- 3. x = -2
- **2.** A parabola with vertex V(0, 0), open to the left, passes through point A(-5, -5). What is its
- **3.** A parabola with vertex V(0, 0), passes through point A(4, 4). What is its equation if the parabola is
 - a) open upwards? _
- **b)** open to the right? ____
- **4.** Complete the following table knowing that each parabola has vertex V(0, 0).

Equation of the parabola	Focus	Equation of the directrix	Equation of the axis of symmetry	A point on the parabola
$x^2 = -6y$	F(-1.5, 0)	y = 1.5	x = 0	A(6, -6)
$y^2 = 8x$	F(2, 0)	x = -2	y = 0	A(2 , -4)
$x^2 = 2y$	$F\left(0,\frac{1}{2}\right)$	$y = -\frac{1}{2}$	x = 0	A(-4, 8)
$y^2 = -x$	$F\left(-\frac{1}{4},0\right)$	$x = \frac{1}{4}$	y = 0	A(-1, 1)

- **5.** Consider the parabola \mathcal{P} with equation: $y^2 = 4x$ and the line l with equation: 2x + y - 4 = 0.
 - a) Determine algebraically the intersection points of parabola \mathcal{P} and line *l*.

$$\begin{cases} y^2 = 4x & \Rightarrow (-2x+4)^2 = 4x; \ 4x^2 - 20x + 16 = 0 \\ y = -2x + 4 & A(1, 2); \ B(4, -4) \end{cases}$$

b) Represent the parabola and line l in the Cartesian plane and verify the answers found in a).

Page 347

- c) Determine
 - 1. the coordinates of the vertex V of parabola \mathcal{P}' . V(2, 3)
 - 2. the coordinates of the focus F' of parabola \mathcal{P}' . F'(2, 4)
 - 3. the equation of the directrix l' of parabola \mathcal{P}' . y = 2
 - 4. the equation of the axis of symmetry of \mathcal{P}' .
- d) Deduce the equation (in the standard form) of parabola \mathcal{P}' from the equation of parabola \mathcal{P} . $(x+2)^2 = 4(y+3)$

Page 348

6. Complete the following table.

Equation of the parabola	Parameter c	Concavity	Coordinates of the vertex	Coordinates of the focus	Equation of a
$(x+3)^2 = 4(y-1)$	1	Upwards	V(-3, 1)	F(-3, 2)	y = 0
$(y-2)^2 = 2(x+1)$	$\frac{1}{2}$	To the right	V(-1, 2)	$F\left(\frac{-1}{2},2\right)$	$x = \frac{-3}{2}$
$(x+1)^2 = -4(y+3)$	1	Downwards	V(-1, -3)	F(-1, -4)	y = -2
$(y+2)^2 = -2(x-1)$	$\frac{1}{2}$	To the left	V(1, -2)	F[1/2, -2]	$x = \frac{3}{2}$

7. Complete the following table.

Equation of the parabola	Parameter c	Concavity	Coordinates of the vertex	Coordinates of the focus	Equation of the directrix
$(x-1)^2 = -6(y+2)$	$\frac{3}{2}$	Downwards	V(1,-2)	$F\left(1,\frac{-7}{2}\right)$	$y=\frac{-1}{2}$
$(x+1)^2 = 4(y-3)$	1	Upwards	V(-1, 3)	F(-1, 4)	y = 2
$(y-2)^2 = -2(x+1)$	$\frac{1}{2}$	To the left	V(-1, 2)	$F\left(-\frac{3}{2},2\right)$	$x = \frac{-1}{2}$
$(y+1)^2 = 6(x-2)$	$\frac{3}{2}$	To the right	V(2, -1)	$F\left(\frac{7}{2},-1\right)$	$x = \frac{1}{2}$

- **8.** Determine the equation of the parabola in each of the following cases.
 - a) The parabola has focus F(1, 4) and directrix l: y = 2. $(x-1)^2 = 4(y-3)$
 - b) The parabola has vertex V(-1, 2), is open to the right and passes through point A(3, 6). $(y-2)^2 = 4(x+1)$
 - c) The parabola has vertex V(1, 3), is open downwards and passes through point A(3, 1). $(x-1)^2 = -2(y-3)$
- **9.** In each of the following cases,
 - 1. draw the parabola.
- 2. locate the focus F.
- 3. draw the directrix *l*.

a)
$$(x+2)^2 = -4(y-1)$$

x	-5	-4	-2	0	1
у	-1.25	0	1	0	-1.25

x	0	1	2.5	3	
У	-1.5 3.5	⁻¹ / ₃	0/2	1	

Page 349

c) $(x+1)^2 = 2(y+2)$

x	-4	-3	-1	1	2
y	2.5	0	-2	0	2.5

d)
$$(y-1)^2 = 4(x+1)$$

x	-1	0	1
y	1	-1/3	-1.8 3.8

Page 350

10. Write the equations of the following parabolas in the general form.

a) $(x-1)^2 = 2(y+1)$ $y = \frac{x^2}{2} - x - \frac{1}{2}$ b) $(x+2)^2 = -4(y-1)$ $y = -\frac{x^2}{4} - x$ c) $(y+3)^2 = \frac{3}{2}(x-4)$ $x = \frac{2}{3}y^2 + 4y + 10$ d) $(y-2)^2 = \frac{-1}{2}(x+2)$ $x = -2y^2 + 8y - 10$

11. Write the equations of the following parabolas in the standard form.

a) $y = x^2 + 2x + 3$ $(x + 1)^2 = (y - 2)$ b) $x = y^2 - 6y + 10$ $(y - 3)^2 = (x - 1)$ c) $y = -x^2 + 4x + 6$ $(x - 2)^2 = -(y - 10)$ d) $x = -y^2 - 2y + 1$ $(y + 1)^2 = -(x - 2)$

12. Determine the coordinates of the focus F and the equation of the directrix *l* of the following parabolas.

a) $y = x^2 - 2x - 1$; $\frac{(x-1)^2 = y + 2}{(y-2)^2 = 4(x+2)}$; $\frac{1!}{4}$; $\frac{9}{4}$; $\frac{9}{4}$ b) $x = \frac{1}{4}y^2 - y - 1$; $\frac{(y-2)^2 = 4(x+2)}{(y-2)^2 = 4(x+2)}$; $\frac{1!}{4}$; $\frac{1}{4}$

13. Represent the solution set of the following inequalities in the Cartesian plane.

a) $(x-2)^2 \le -4(y-1)$

b) $(y-1)^2 \ge 2(x+1)$

c) $(y-1)^2 < -4(x-3)$

14. For each of the following regions, determine the inequality that defines it.

a)

b)

 $y^2 \leq -2(x-3)$

 $y^2 > 4(x+2)$

- **15.** Consider the parabola $\mathcal P$ with vertex V(-2, 1) and focus $F(\frac{-3}{2}, 1)$ and the line l passing through points A(2, 1) and B(4, 3).
 - a) Find the intersection points C and D of parabola \mathcal{P} and line l. C(0, -1), D(6, 5) $\mathcal{P}: (y-1)^2 = 2(x+2); l: y = x-1$
 - **b)** Draw parabola \mathcal{P} and line l and verify the results found
 - c) Consider the closed region R whose boundary is parabola \mathcal{P} and line l.

Describe region R using a system of inequalities. _

 $(y-1)^2 \leq 2(x+2)$

- **16.** Consider the hyperbola \mathcal{H} with equation: $x^2 y^2 = 1$ and the parabola \mathcal{P} with equation: $x + 1 = y^2$.
 - a) Find the intersection points of the hyperbola and the parabola.

$$x^{2} - (x + 1) = 1 \Leftrightarrow x^{2} - x - 2 = 0 \Leftrightarrow x = -1 \text{ or } x = 2$$

There are 3 intersection points.

$$A(-1, 0), B(2, -\sqrt{3}), C(2, \sqrt{3})$$

b) Represent, in the Cartesian plane, the region defined by the system $\begin{cases} x^2 - y^2 \le 1 \\ x + 1 \ge y^2 \end{cases}$

17. In each of the following cases, represent the region defined by the system.

a)
$$\begin{cases} x^2 + y^2 \le 3 \\ y^2 \le 2x \end{cases}$$

b)
$$\begin{cases} y^2 \ge -2(x-2) \\ 4x^2 + 9y^2 - 36 \le 0 \end{cases}$$

18. Consider the circle $\mathscr C$ and the parabola $\mathscr P$ on the right. The vertex of the parabola is the centre $\omega(1,2)$ of the circle. The points A(4,6) and B(4,-6) are the intersection points of the circle and the parabola. Describe, using a system, the shaded region.

$$\begin{cases} (y-1)^2 + (y-2)^2 \le 25 \\ (y-2)^2 \le \frac{16}{3}(x-1) \end{cases}$$

19. The parabola on the right, open to the right with vertex V(-2, 1) crosses the x-axis at point A(-1, 0).

Calculate the distance traveled by a light ray going from point P(6,3) in a direction parallel to the *x*-axis, hitting the parabola at point I and reflected at the focus F.

Parabola:
$$(y-1)^2 = x+2$$
; $c = \frac{1}{4}$; $F\left(-\frac{7}{4}, 1\right)$.

$$I(2, 3)$$
: $m\overline{PI} = 4 u$; $m\overline{IF} = \frac{17}{4}u$; distance traveled = 8.25 u.

