Page 323

1.	Find the ec	quation of the circle	e centred at the origin with rac	dius				
	a) $r = 2$	$x^2 + y^2 = 4$	b) $r = \sqrt{3}$	$x^2 + y^2 = 3$				
2.	Find the ec	quation of the circle	e centred at the origin passing	through $A(-2,3)$	$x^2 + y^2 = 13$			

- **3.** Consider the circle with equation: $x^2 + y^2 = 5$. Indicate if the following points belong to the
 - circle.

 a) A(-2, 1) Yes b) B(1, -2) Yes c) C(-2, 2) No
- **4.** Consider the circle with equation: $x^2 + y^2 = 25$. Find the points M(x, y) of the circle that have a) an x-coordinate equal to 4. $M_1(4, 3)$ and $M_2(4, -3)$
 - b) a y-coordinate equal to -2. $M_1(-\sqrt{21}, -2)$ and $M_2(\sqrt{21}, 2)$

Page 325

- **5.** Consider the circle $\mathscr C$ of radius 3 units centred at O(0, 0) and the translation $t: (x, y) \to (x 1, y + 2)$.
 - a) Find the equation of circle \mathscr{C} . $x^2 + y^2 = 9$
 - **b)** We draw circle \mathscr{C}' , image of circle \mathscr{C} , under translation t.
 - 1. Determine the coordinates of the centre of circle \mathscr{C}' and its radius.

Centre (-1, 2); radius: 3

- 2. Find the equation of circle \mathscr{C}' . $(x+1)^2 + (y-2)^2 = 9$
- **6.** Determine the centre ω and the radius r of the following circles.
 - a) $(x-3)^2 + (y-4)^2 = 16$ $\omega(3, 4); r = 4$
 - **b)** $(x+2)^2 + (y-1)^2 = 9$ $\omega(-2, 1); r = 3$
 - c) $(x+3)^2 + (y+1)^2 = 17$ $\omega(-3, -1); r = \sqrt{17}$
 - d) $\frac{(x+2)^2}{3} + \frac{(y-7)^2}{3} = 12$ ______ $\omega(-2, 7); r = 6$
- **7.** Find the equation of the circle, in the standard form, knowing the centre ω and a point M on the circle.
 - a) $\omega(1,3)$ and M(1,7) $(x-1)^2 + (y-3)^2 = 16$
 - **b)** $\omega(-4, 5)$ and M(2, -3) $(x + 4)^2 + (y 5)^2 = 100$
- **8.** The points A(-1, 2) and B(-3, -4) are the endpoints of a diameter AB of a circle. Find the equation, in the standard form, of this circle.

$$(x+2)^2 + (y+1)^2 = 10$$

9. The equation of a circle centred at the origin is $x^2 + y^2 = 16$.

Describe the translation which associates, with this circle, the circle of equation

- a) $(x-1)^2 + (y+4)^2 = 16$: $(x, y) \rightarrow (x+1, y-4)$
- **b)** $x^2 + (y-3)^2 = 16$: (x, y) \rightarrow (x, y + 3)
- c) $(x+2)^2 + y^2 = 16$: $(x, y) \rightarrow (x-2, y)$
- d) $(x+1)^2 + (y+3)^2 = 16$: $(x, y) \rightarrow (x-1, y-3)$

Page 326

10. In each of the following cases, find the equation of circle $\mathscr C$ in the standard form and then in the general form.

a) Centre
$$(-1, 3)$$
; radius 2.

1.
$$(x+1)^2 + (y-3)^2 = 4$$

$$2. \quad x^2 + y^2 + 2x - 6y + 6 = 0$$

c) Centre
$$(2,-1)$$
; $M(-1,3) \in \mathcal{C}$.

1.
$$(x-2)^2 + (y+1)^2 = 25$$

$$2. \quad x^2 + y^2 - 4x + 2y - 20 = 0$$

b) Centre
$$(0, -3)$$
; radius 2.

1.
$$x^2 + (y + 3)^2 = 4$$

$$2. \quad x^2 + y^2 + 6y + 5 = 0$$

d)
$$\overline{AB}$$
 is a diameter, A(-2, 1) and B(4, -3).

1.
$$(x-1)^2 + (y+1)^2 = 13$$

2.
$$x^2 + y^2 - 2x + 2y - 11 = 0$$

- **11.** For each of the following circles,
 - 1. write the equation of the circle in the standard form.
 - 2. find the centre and the radius of the circle.

a)
$$x^2 + y^2 - 2x + 4y - 4 = 0$$

$$(x-1)^2 + (y+2)^2 = 9$$

$$\omega(1, -2); r = 3$$

b)
$$x^2 + y^2 + 8x + 4y + 19 = 0$$

$$(x + 4)^2 + (y + 2)^2 = 1$$

$$\omega(-4, -2)$$
; $r = 1$

c)
$$x^2 + y^2 - 4x + 6y - 4 = 0$$

 $(x - 2)^2 + (y + 3)^2 = 17$

$$\omega(2, -3); r = \sqrt{17}$$

d)
$$x^2 + y^2 - x + 3y - 1.5 = 0$$

$$\frac{\left(x - \frac{1}{2}\right)^2 + \left(y + \frac{3}{2}\right)^2 = 4}{\omega \left(\frac{1}{2}, \frac{-3}{2}\right)^2; r = 2}$$

$$\omega \left(\frac{1}{2}, \frac{-3}{2}\right)^2; r = 2$$

- **12.** Explain why each of the following equations is not that of a circle.
 - a) $x^2 + y^2 4x + 6y + 14 = 0$ $(x 2)^2 + (y + 3)^2 = -1$. The sum of 2 squares cannot be negative.
 - b) $x^2 y^2 2x 4y 19 = 0$ The coefficient of y^2 cannot be negative.
- **13.** Determine, if they exist, the intersection points of circle \mathscr{C} with line l.

a)
$$\mathscr{C}: (x-1)^2 + (y+2)^2 = 9$$

$$l: y = -x + 2$$
(1, 1) and (4, -2)

b)
$$\mathscr{C}: (x+1)^2 + (y-2)^2 = 2$$

$$x - y + 1 = 0$$

a)
$$\mathscr{C}: (x-1)^2 + (y+2)^2 = 9$$
 b) $\mathscr{C}: (x+1)^2 + (y-2)^2 = 2$ c) $\mathscr{C}: (x+2)^2 + (y+1)^2 = 1$ $l: x-y+1=0$ $l: x-y-1=0$

No intersection point.

d)
$$\mathscr{C}: x^2 + y^2 - 2x + 4y + 1 = 0$$
 e) $\mathscr{C}: x^2 + y^2 = 9$ $l: x - y - 1 = 0$ **f)** $\mathscr{C}: x^2 + y^2 - 2x + 4y - 20 = 0$ $l: 3x + 4y - 20 = 0$

e)
$$\mathscr{C}: x^2 + y^2 = 9$$
 $l: x + y = 5$

f)
$$\mathscr{C}: x^2 + y^2 - 2x + 4y - 20 = 0$$

 $l: 3x + 4y - 20 = 0$

14. Represent the solution set of the following inequalities in the Cartesian plane.

a)
$$x^2 + y^2 \le 9$$

b)
$$(x-2)^2 + (y-1)^2 \ge 4$$

c)
$$x^2 + y^2 + 4x + 2y + 1 < 0$$

d)
$$x^2 + y^2 + 2x - 3 > 0$$

15. For each of the following regions, determine the inequality that defines it.

$$(x+1)^2 + (y-1)^2 \le 4$$

$$(x-3)^2+(y-1)^2>\frac{9}{4}$$

16. Consider the circle with equation: $(x+1)^2 + (y-2)^2 = 25$.

- a) Verify that point A(2, 6) is a point on this circle. $(2 + 1)^2 + (6 2)^2 = 25$
- b) What are the coordinates of the centre ω of the circle? _____ ω (-1, 2)
- **c)** Explain the procedure to find the equation of the line *l* tangent to the circle at point A.
 - 1. We calculate the slope of the radius $\overline{\omega A}$.
 - 2. We deduce the slope of the tangent l knowing that $\overline{\omega A} \perp l$.
 - 3. We find the equation of the line l passing through point A(2, 6) knowing its slope.
- **d)** Find the equation of the tangent l at point A.

1.
$$a_{\overline{\omega}a} = \frac{6-2}{2+1} = \frac{4}{3}$$

2.
$$a_d = \frac{-3}{4}$$

1.
$$a_{\overline{a}a} = \frac{6-2}{2+1} = \frac{4}{3}$$
 2. $a_d = \frac{-3}{4}$ 3. $d: y = -\frac{3}{4}x + \frac{15}{2}$

17. Use the data from exercise 16. Justify the steps allowing us to find the equation of the tangent l at point A using the scalar product.

	Steps	Justifications
1.	$M(x, y) \in d \Leftrightarrow \overrightarrow{AM} \perp \overrightarrow{A\omega}$	Property of the tangent.
2.	$\Leftrightarrow \overrightarrow{\mathrm{AM}} \cdot \overrightarrow{\mathrm{A}\omega} = 0$	Property of the scalar product.
3.	$\Leftrightarrow (x-2,y-6)\cdot(-3,-4)=0$	Calculating the vector components.
4.	$\Leftrightarrow -3(x-2)-4(y-6)=0$	Calculating the scalar product.
5.	$\Leftrightarrow -3x - 4y + 30 = 0$	Equation of line l (general form).
6.	$\Leftrightarrow y = -\frac{3}{4}x + \frac{15}{2}$	Equation of line l (functional form).

18. Find the equation of the tangent to the circle with equation: $x^2 + y^2 - 2x + 4y - 35 = 0$ at point A(3, 4).

 $\mathscr{C}: (x-1)^2 + (y+2)^2 = 40; \quad \omega(1,-2); \quad a_{\omega A} = 3; \quad l: y = -\frac{1}{3}x + 5$

19. Find the equation of the circle with centre $\omega(-2,3)$ if the circle is tangent to

a) the x-axis. $(x+2)^2 + (y-3)^2 = 9$

- b) the y-axis. $(x+2)^2 + (y-3)^2 = 4$
- **20.** Consider the line l: 2x + y 4 = 0 and a point $\omega(1, -3)$.
 - a) Find the equation of the circle $\mathscr C$ centred at ω and tangent to line l.

 Radius = $d(\omega, l) = \sqrt{5}$; $(x-1)^2 + (y+3)^2 = 5$

b) Find the coordinates of the point of tangency A. A(3, -2)

21. Consider the circle $\mathscr C$ with equation: $x^2 + y^2 = 18$.

a) Find the coordinates of points A₁ and A₂ on the circle which have an x-coordinate equal to 3. A₁(3, 3) and A₂(3, -3)

c) Show that lines l_1 and l_2 meet at a point P located on the x-axis.

The system $\begin{cases} y = -x + 6 \\ y = x - 6 \end{cases}$ has solution P(6, 0)

- d) Show that the quadrilateral OA_1PA_2 is a square. $mOA_1 = mA_1P = mPA_2 = mOA_2 = \sqrt{18} \Rightarrow OA_1PA_2$ is a rhombus. $\angle OA_1P$ is a right angle (Property of the tangent) $\Rightarrow OA_1PA_2$ is a square, since one of the angles of the rhombus is right.
- e) Calculate the area of the region bounded by the line segment PA_1 , the line segment PA_2 and the arc of circle A_1A_2 . Area of square $0A_1PA_2 = 18 u^2$

Area of the circular sector $A_10A_2 = \frac{18\pi}{4}u^2$ (one quarter of the disk). Requested area = $\left[18 - \frac{9\pi}{2}\right]u^2$.