Page 207

- 1. a) Light deafness (threshold approximately 34.81 dB).
 - b) Moderate deafness (threshold approximately 49.97 dB).
 - c) Light deafness (threshold 20 dB).
- **2.** $F = 62.5(2)^x$ where F represents the frequency (in Hz) and x represents the stage number of the hearing test.

1. a) 1)

- 2) Domain: ℝ, range:]0, +∞[.
- 3) 1.8
- 4) No zero.
- **5)** Positive: ℝ.

d) 1)

- 2) Domain: ℝ, range:]-∞, -10[.
- 3) ≈ -11.49
- 4) No zero.
- 5) Negative: R.

g) 1)

- 2) Domain:]- ∞ , 4[, range: \mathbb{R} .
- **3)** -10
- 4) 3
- Negative:]-∞, 3]
 and positive: [3, 4[.

b) 1)

- **2)** Domain:]3, +∞[, range: ℝ.
- 3) No initial value.
- 4) 4
- **5)** Positive: [4, +∞[and negative:]3, 4].

e) 1)

- **2)** Domain: ℝ, range:]5, +∞[.
- **3)** 5.15
- 4) No zero.
- 5) Positive: ℝ.

h) 1)

- **2)** Domain: ℝ, range:]0, +∞[.
- **3)** 1500
- 4) No zero.
- 5) Positive: ℝ.

c) 1)

- 2) Domain: $]0, +\infty[$, range: \mathbb{R} .
- 3) No initial value.
- 4) 1
- 5) Positive:]0, 1] and negative: [1, +∞[.

f) 1)

- **2)** Domain: ℝ, range:]0, +∞[.
- **3)** 450
- 4) No zero.
- 5) Positive: ℝ.

i) 1)

- 2) Domain:]-6, +∞[, range: ℝ.
- 3) ≈ -7.33
- 4) ≈ 2087372975.67
- 5) Negative: [-6, ≈ 2 087 372 975.67] and positive:
 - $[\approx 2.087.372.975.67, +\infty]$

- **2. a)** $f(x) = 2(3)^x 5$
 - **d)** $f(x) = 4\left(\frac{1}{2}\right)^x 4$
 - **g)** $f(x) = -2(4)^x$

- **b)** $f(x) = \log_2 x$
- **e)** $f(x) = 1500 \left(\frac{82}{75}\right)^{\frac{x}{2}}$
- **h)** $f(x) = \log_{20} (x 1)$
- c) $f(x) = \log_2(x + 2)$
- **f)** $f(x) = \log_{\frac{1}{2}}(x+4)$
- i) $f(x) = -2^x + 5$

Page 209

- 3. a) $x \approx 13.64$
- **b)** x = 15
- c) $x \approx 1.62$
- **d)** $x = 125\,000$

- **e)** $x \approx 0.20$
- **f)** $x \approx 0.74$
- **g)** x = -79
- **h)** $x \approx 0.85$

- **4. a)** x > 99998
- **b)** x > 7
- c) x < 5.27
- **d)** $x \le -252$

- **e)** $x > \approx 81 337.40$ **f)** $x \ge 3.42$
- g) $x \le 2$
- **h)** $x \ge 10^{-7}$

- **5.** a) $f^{-1}(x) = \log_{0.7} \frac{1}{3}(x-2)$
- **b)** $g^{-1}(x) = -0.5 \ln -0.4x$
- c) $h^{-1}(x) = 2^{\frac{x}{7}} 9$

- **d)** $i^{-1}(x) = -\log_{0.05} \frac{2x}{3} + 4$
- **e)** $i^{-1}(x) = 321e^{\frac{x}{455}}$

f) $k^{-1}(x) = 7(10)^{\frac{x}{3}}$

- **6.** a) x = 5
- **b)** x = 2
- c) $x \approx -1.63$
- **d)** $x \approx 3.61$
- 7. Yes. At an annual interest rate of 4% where the interest rate is compounded annually, the value of the investment after 20 years is $1600(1.04)^{20} \approx \$3,505.80$; however, if the interest is compounded every 6 months, the amount after 20 years is $1600(1.02)^{40} \approx $3,532.86$.
- **8.** The moment when the critical threshold is reached: $5(1.5)^x = 5(1.5)^{14-x}$

$$x = 14 - x$$

x = 7 years

The power associated to the critical threshold is $5(1.5)^7 \approx 85.43$ MW.

Page 210

- **9.** a) 1) \approx \$7,401.22
- 2) \approx \$7,429.74

- 3) \approx \$7,456.83
- b) For the same annual interest rate, the more the value of the investment increases.
- **10.** a) Approximately 3.46 million visitors.
- **b)** 4 million visitors.
- c) Approximately 4.95 million visitors.

11. Several answers possible. Example: $y \approx 0.92(1.007)^x$

Page 211

- **12.** In approximately 9.63 years.
- **13.** a) $Q = 1000(0.9)^t$
- **b)** 190 L
- c) Approximately 35.01 h after it starts to boil.
- **d)** 25 L

14. a) 1) 450

2) 10.7

3) 225

- **b) 1)** $225 = 450e^{a10.7}$
- 2) ≈ -0.06

3) $M = 450e^{-0.0648t}$

- c) 1) $M = 5e^{-0.0001t}$
- 2) $M = 50e^{-0.0564t}$
- 3) $M = M_0 e^{\frac{-t}{1.024313479}}$

15. a)

Incidence of Alzheimer's disease for six age groups

b) 1)

Incidence of Alzheimer's disease for six age groups

2) Several answers possible. Example:

 $I = \frac{e^{0.1275a}}{16\ 666.67}$ where I represents the incidence and a, the age.

- c) A person must undergo these tests as of age of 76.
- 16. a) The rod was expanded by approximately 2.54 mm.
 - b) The rod expands by 2 mm at 20°C.
 - c) The expansion of the rod is greater than 4 mm for temperatures that are greater than 2000°C.
 - d) The maximum expansion of the rod is approximately 3.35 mm.

Page 213

17. Approximately 1.81 min after it is activated.

18. a)
$$e^{-0.1 \times 5} \approx 60.65\%$$

b)
$$0.05C_0 = C_0 e^{-0.1t}$$

$$0.05 = e^{-0.1t}$$

$$-0.1t = \ln 0.05$$

$$t \approx 29.96$$

The water must remain in the tank for approximately 29.96 days.

- **19.** a) The voltage of Battery \bigcirc is decreasing because the base, $e^{-1.2}$, is less than 1.
 - **b) 1)** At 0 h.

- 2) At approximately 0.24 h (approximately 14 min 23 s).
- c) There is a risk of fire as of approximately 0.58 h (approximately 34 min 39 s).

Page 214

- **20.** a) $250e^{0.7 \times 0} = 250$ dandelions.
 - **b) 1)** 250e^{0.7 × 1} \approx 503 dandelions. **2)** 250e^{0.7 × 2} \approx 1014 dandelions. **3)** 250e^{0.7 × 4} \approx 4111 dandelions.

- c) $250e^{\frac{0.7}{7}} 250 \approx 26$ dandelions.
- 21. a)

Level of perceived difficulty of training as a function of time

b) 1)

Level of perceived difficulty of training as a function of time

2) Several possible answers. Example: $y \approx 12.34(0.82)^x$

- c) 1) At \approx 2.14 weeks.
- 2) At \approx 2.80 weeks.
- 3) At \approx 3.56 weeks.
- 4) At \approx 5.56 weeks.

Page 215

- 22. a) At the start of the aging process, the water counts as 30% of the mass of this cheese.
 - b) The quantity of water would be 28% of the mass of this cheese in approximately 6.90 years.
- **23.** a) \approx 99.37 kPa

b) \approx 793 m

c) $\approx 137.38 \text{ K}$