Page 176 Practice 6.1

1. a)
$$x^2 + y^2 = 64$$

b)
$$x^2 + y^2 = 582.5$$

c)
$$x^2 + y^2 = 144$$

d)
$$x^2 + y^2 = 625$$

e)
$$x^2 + v^2 = 73$$

f)
$$x^2 + y^2 = 40$$

e) 5.3 f)
$$\sqrt{5}$$

Practice 6.1 (cont'd)

Page 177 b) $\frac{x^2}{64} + \frac{y^2}{256} = 1$ **c)** $\frac{x^2}{289} + \frac{y^2}{196} = 1$

3. a)
$$\frac{x^2}{64} + \frac{y^2}{36} = 1$$

b)
$$\frac{x^2}{64} + \frac{y^2}{256} =$$

c)
$$\frac{x^2}{289} + \frac{y^2}{196} = \frac{1}{196}$$

d)
$$\frac{x^2}{144} + \frac{y^2}{729} = 1$$

e)
$$\frac{x^2}{210.25} + \frac{y^2}{110.25} = 1$$
 f) $\frac{x^2}{25} + \frac{y^2}{169} = 1$

f)
$$\frac{x^2}{25} + \frac{y^2}{169} = 1$$

- **4.** a) 1) (13, 0), (-13, 0), (0, 5) and (0, -5).
- **2)** (12, 0) and (-12, 0).
- **b) 1)** (6, 0), (-6, 0), (0, 10) and (0, -10).
- 2) (0, 8) and (0, -8).
- c) 1) (8.5, 0), (-8.5, 0), (0, 7.5) and (0, -7.5).
- 2) (4, 0) and (-4, 0).
- **d) 1)** (20, 0), (-20, 0), (0, 29) and (0, -29).
- **2)** (0, 21) and (0, -21).
- **e) 1)** (30, 0), (-30, 0), (0, 18) and (0, -18).
- 2) (24, 0) and (-24, 0).
- f) 1) (12.5, 0), (-12.5, 0), (0, 3.5) and (0, -3.5). 2) (12, 0) and (-12, 0).

Practice 6.1 (cont'd)

Page 178

5. a)
$$x^2 + y^2 = 1$$

b)
$$x^2 + y^2 = 544$$

5. a)
$$x^2 + y^2 = 16$$
 b) $x^2 + y^2 = 544$ c) $x^2 + y^2 = 169$ d) $x^2 + y^2 = 100$

d)
$$x^2 + y^2 = 100$$

6. a)
$$\frac{x^2}{16} + \frac{y^2}{25} = \frac{1}{25}$$

b)
$$\frac{x^2}{42.25} + \frac{y^2}{90.25} = 1$$

c)
$$\frac{x^2}{289} + \frac{y^2}{64} = 1$$

d)
$$\frac{x^2}{400} + \frac{y^2}{225} = 1$$

6. a)
$$\frac{x^2}{16} + \frac{y^2}{25} = 1$$
 b) $\frac{x^2}{42.25} + \frac{y^2}{90.25} = 1$ c) $\frac{x^2}{289} + \frac{y^2}{64} = 1$ d) $\frac{x^2}{400} + \frac{y^2}{225} = 1$ e) $\frac{x^2}{11\ 025} + \frac{y^2}{21\ 025} = 1$

7. a)

d)

e)

f)

3.	Equation of the ellipse	Coordinates of the vertices	Length of the major axis	Length of the minor axis	Coordinates of the foci
	$\frac{x^2}{400} + \frac{y^2}{841} = 1$	(20, 0), (-20, 0) (0, 29), (0, -29)	58 u	40 u	(0, 21), (0, -21)
	$\frac{x^2}{81} + \frac{y^2}{225} = 1$	(0, 15), (9, 0) (0, -15), (-9, 0)	30 u	18 u	(0, 12), (0, -12)
	$\frac{x^2}{169} + \frac{y^2}{25} = 1$	(13, 0), (-13, 0) (0, 5), (0, -5)	26 u	10 u	(12, 0), (-12, 0)
	$\frac{x^2}{100} + \frac{y^2}{210.25} = 1$	(10, 0), (-10, 0) (0, 14.5), (0, -14.5)	29 u	20 u	(0, 10.5), (0, -10.5)
	Two answers possible:	Two answers possible:			Two answers possible:
	$\frac{x^2}{5329} + \frac{y^2}{2304} = 1$	(73, 0), (-73, 0) (0, 48), (0, -48)			(55, 0), (-55, 0)
	or	or	146 u	96 u	or
	$\frac{x^2}{2304} + \frac{y^2}{5329} = 1$	(48, 0), (-48, 0) (0, 73), (0, -73)			(0, 55), (0, -55)

Practice 6.1 (cont'd)

Page 179

9. a)
$$x^2 + y^2 \le 9$$

b)
$$\frac{x^2}{100} + \frac{y^2}{36} < 1$$

c)
$$\frac{x^2}{64} + \frac{y^2}{36} > 1$$

f) $\frac{x^2}{49} + \frac{y^2}{625} \le 1$

d)
$$x^2 + y^2 > 13.69$$

e)
$$\frac{x^2}{9} + \frac{y^2}{4} \ge 1$$

f)
$$\frac{x^2}{49} + \frac{y^2}{625} \le 1$$

10. a) Since the perimeter $P \approx \pi [3(a+b) - \sqrt{(a+3b)(3a+b)}]$ and that the values of parameters **a** and **b** are respectively 48 and approximately 87.37, you obtain:

$$P \approx \pi (3(48 + 87.37) - \sqrt{(48 + 3 \times 87.37)(3 \times 48 + 87.37)})$$

 $\approx \pi (138.24)$
 $\approx 138.24 \times \pi$

The perimeter is approximately 434.31 u.

b) Since the area $A = \pi ab$, you obtain:

$$A \approx \pi \times 48 \times 87.37$$

The area is approximately 13 174.64 u^2 .

Practice 6.1 (cont'd)

Page 180

11. a) Several answers possible. Example:

b) Based on the adjacent graph, a = 17.9, b = 17.3 and c is determined using $a^2 + b^2 = c^2$, since a > b. $17.9^2 = 17.3^2 + c^2 \Rightarrow c \approx 4.6$

The coordinates of the foci are (\approx 4.6, 0) and (\approx -4.6, 0).

- **12.** a) $x^2 + y^2 = 3600$
 - **b)** (60, 0), (-60, 0), (52, 30), (-52, 30), (52, -30), (-52, -30), (30, 52), (-30, 52), (30, -52), (-30, -52), (0, 60) and (0, -60).

13. a)
$$x^2 + y^2 = 9$$

b)
$$\frac{x^2}{9} + \frac{y^2}{25} = 1$$

14. a) It is possible to deduce that the value of parameter $\bf a$ is 200 and that parameter $\bf c$ is 375. Using the relation $a^2 + c^2 = b^2$, you can deduce that the value of parameter **b** is 425.

The inequality that corresponds to the surface of the lake is $\frac{x^2}{40.000} + \frac{y^2}{180.625} \le 1$.

- **b)** The minimum distance is 425 375 = 50 m.
- c) The distance that separates the coach from each of the buoys is 425 m.
- **15.** a) Pool **A** has the shape of a circle and Pool **B** has the shape of an ellipse.

Since the extended string measures 4 m, the radius of the circle is 4 m. The equation that corresponds to the perimeter of this pool is $x^2 + y^2 = 16$.

Several answers possible. Example:

It is possible to deduce parameters \mathbf{a} and \mathbf{b} based on parameter \mathbf{c} , which is equal to 3 and based on parameter a, which is equal to 5. The equation that corresponds to the perimeter of this pool is $\frac{x^2}{25} + \frac{y^2}{16} = 1$.

- c) 1) The maximum width of Pool A is 8 m (diameter of the circle).
 - 2) The maximum width of Pool B is 10 m (major axis of the ellipse).

Practice 6.1 (cont'd)

Page 182

- **16.** a) The inequality that corresponds to the surface of this lot is $x^2 + y^2 \le 2500$.
 - **b)** 1) Circumference of the lot: $\pi \times 100 \approx 314.16$ m Total cost of the fence: $12 \times 314.16 \approx \$3,769.92$
 - 2) Area of the lot: $\pi \times 50^2 \approx 7853.98 \text{ m}^2$ Total cost of the sod: $8 \times 7853.98 \approx $62,831.85$
- 17. a) The equation of the small ellipse is: $\frac{x^2}{1190.25} + \frac{y^2}{361} = 1$.

The equation of the large ellipse is: $\frac{x^2}{4422.25} + \frac{y^2}{2550.25} = 1$.

b) Using the relation $b^2 + c^2 = a^2$, it is possible to deduce the coordinates of each flag.

Flag **A**: (\approx -43.27, 0)

Flag **B**: (\approx -28.8, 0)

Flag **C**: (\approx 28.8, 0)

Flag **D**: ($\approx 43.27, 0$)

- c) 1) The distance between Flags A and B is approximately 14.47 m.
 - 2) The distance between Flags B and C is approximately 57.6 m.
 - 3) The distance between Flags A and D is approximately 86.54 m.

Practice 6.1 (cont'd)

Page 183

18. a) The equation of the small circle is $x^2 + y^2 = 9$.

The equation of the ellipse is $\frac{\chi^2}{64} + \frac{y^2}{9} = 1$.

The equation of the large circle is $x^2 + y^2 = 64$.

b) $x^2 + y^2 < 9$

c) 1) $\frac{x^2}{64} + \frac{y^2}{9} < 1$ 2) $x^2 + y^2 < 64$

2)
$$x^2 + v^2 < 64$$

$$x^2 + y^2 > 9$$

$$\frac{x^2}{64} + \frac{y^2}{9} > 1$$

19. a) Several answers possible. Example:

The equation of the circle associated with this situation is $x^2 + y^2 = 81$ because $6.5^2 + 6.23^2 \approx 81$. The radius of the circular coin measures approximately 9 mm.

The major axis measures 32.4 mm since it is 1.8 times longer than the diameter of the circle: $9 \times 2 \times 1.8 = 32.4$.

The minor axis measures 14.4 mm since it is 1.25 times shorter than the diameter of the circle: $9 \times 2 \div 1.25 = 14.4$.

b)
$$\frac{x^2}{262.44} + \frac{y^2}{51.84} = 1$$

c) Determine the coordinates of each focus by using the relation $a^2 + c^2 = b^2$. The coordinates of the foci are $(\approx -14.51, 0)$ and $(\approx 14.51, 0)$.