Page 94

3) Find the zeros of the following functions.

a)
$$f(x) = -4(x+2)^2 + 16$$
 -4 and 0

b)
$$f(x) = \frac{1}{2}(x+3)^2 - 2$$
 -5 and -1

a)
$$f(x) = -4(x+2)^2 + 16 \frac{-4 \text{ and } 0}{}$$
 b) $f(x) = \frac{1}{2}(x+3)^2 - 2 \frac{-5 \text{ and } -1}{}$ c) $f(x) = 2(x+1)^2 - 10 \frac{-1 - \sqrt{5} \text{ and } -1 + \sqrt{5}}{}$ d) $f(x) = (x-1)^2 - 7 \frac{1 - \sqrt{7} \text{ and } 1 + \sqrt{7}}{}$

$$f(x) = (x-1)^2 - 7$$
 1 - $\sqrt{7}$ and 1 + $\sqrt{7}$

e)
$$f(x) = -2(x+3)^2$$

e)
$$f(x) = -2(x+3)^2$$
 ____ f) $f(x) = 3(x-2)^2 - 27$ ___ -1 and 5

q)
$$f(x) = 3(x-1)^2 + 6$$
 none h) $f(x) = -(x+1)^2$ -1

h)
$$f(x) = -(x+1)^2$$

a) If a > 0, indicate the number of zeros when

1. k > 0. __none

2. k = 0. only one 3. k < 0. two zeros

b) If a < 0, indicate the number of zeros when

1. k > 0. __two zeros ____ 2. k = 0. ___ only one ____ 3. k < 0.__

Page 96

Graph the following parabolas. a) $y = -(x - 1)^2 + 4$

a)
$$y = -(x-1)^2 + 4$$

c)
$$y = -\frac{1}{4}(x+2)^2$$

b)
$$y = \frac{1}{2}(x-3)^2 - 2$$

d)
$$y = \frac{1}{2}(x-3)^2 + 1$$

- **6.**) Consider the function $f(x) = -2(x-1)^2 + 2$ represented on the right.
 - a) What is the domain of f? **dom** $f = \mathbb{R}$
 - ran $f =]-\infty, 2]$ **b)** What is the range of f?_
 - 0 and 2 c) What are the zeros of f?_
 - d) What is the y-intercept of f?
 - $f(x) \leq 0 \text{ if } x \in]-\infty, 0] \cup [2, +\infty[$ **e)** What is the sign of *f*? _____ $f(x) \ge 0 \text{ if } x \in [0, 2]$

- f) Complete the study of the variation of f.
 - 1. f is increasing over _____ J- ∞ , 1]
- 2. f is decreasing over
- g) 1. Does function f reach a maximum? If yes, what is it? Yes; max f = 2
 - 2. Does function f reach a minimum? ______no
- Consider the function $f(x) = \frac{1}{2}(x+1)^2 2$ represented on the right.
 - a) 1. dom f. \mathbb{R} 2. ran f. $[-2, +\infty]$
 - **b)** 1. the zeros of f_{\cdot} -3 and 1 2. the y-intercept of f_{\cdot} --1.5
 - c) the sign of f, $f(x) \ge 0$ over $]-\infty$, $-3] \cup [1, +\infty[; f(x) \le 0 \text{ over } [-3, 1]$
 - d) the variation of f. f is increasing over $[-1, +\infty[$. f is decreasing over]- ∞ , -1].
 - e) the minimum of f. min f = -2

Page 97

8. Find the domain and range of the following functions.

a)
$$f(x) = -2(x+1)^2 + 5$$

$$dom f = \mathbb{R}; ran f =]-\infty, 5]$$

b)
$$f(x) = \frac{3}{2}(x-1)^2 - 2$$

 $dom f = \mathbb{R}$; $ran f = [-2, +\infty[$

$$dom f = \mathbb{R}$$
; $ran f = [-2, +\infty]$

- Determine the zeros of the function $y = -2(x 3)^2 + 18$. ____0 and 6

11. The sign of the quadratic function $f(x) = a(x - h)^2 + k$ depends on the signs of a and k. Indicate, in each of the 6 following cases, the intervals where f(x) > 0 and f(x) < 0.

- **12.** Determine, in each case, the values of x for which
 - 1. f(x) > 0.
- 2. $f(x) \ge 0$.
- 3. f(x) < 0.
- 4. $f(x) \leq 0$.

a)
$$f(x) = 2(x-1)^2 - 2$$

1.
$$f(x) > 0 \text{ if } x \in]-\infty, 0 [\cup] 2, +\infty[$$

$$f(x) \ge 0 \text{ if } x \in]-\infty, 0 \cup [2, +\infty[$$

3.
$$f(x) < 0 \text{ if } x \in]0, 2[$$

4.
$$f(x) \le 0 \text{ if } x \in [0, 2]$$

- b) $f(x) = -4(x-3)^2 + 16$
 - 1. $f(x) > 0 \text{ if } x \in]1, 5[$
 - 2. $f(x) \ge 0 \text{ if } x \in [1, 5]$
 - 3. $f(x) < 0 \text{ if } x \in]-\infty, 1 [\cup] 5, +\infty[$
 - 4. $f(x) \leq 0 \text{ if } x \in]-\infty, 1] \cup] [5, +\infty[$
- **13.** Determine the values of x for which $y = 3(x 1)^2 27$ is positive. $x \in]-\infty, -2] \cup [4, +\infty[$
- **14.** Study the variation of the following functions.

a)
$$f(x) = 3(x - 1)^2 - 2$$

f is decreasing over]- ∞ , 1].

f is increasing over [1, + ∞ [.

b)
$$f(x) = -2(x+1)^2 + 1$$

f is increasing over $]-\infty$, -1].

f is decreasing over $[-1, +\infty[$.

- **15.** Determine the interval over which the function $f(x) = 2(x+4)^2 + 2$ is increasing. [-4, + ∞]
- **16.** Determine the values of x for which the function $y = -3(x+1)^2 + 12$ is increasing. $x \in J^{-\infty}, -1J$

- **17.** In each of the following cases, indicate whether the function reaches a maximum or a minimum and determine it.
 - a) $f(x) = -2(x-3)^2 1$

b) $f(x) = \frac{3}{4}(x+1)^2 - 2$

A maximum: max f = -1

A minimum: min f = -2

- **18.** Find the extremum and its nature (maximum or minimum) of $f(x) = 3(x-1)^2 4$. A minimum: -4
- **19.** What is the axis of symmetry of the parabola with equation $y = (x 1)^2$? The line x = 1
- **20.** Find the values of x for which the function $f(x) = -2(x-1)^2 4$ is equal to -36. -3 and 5
- 21.
- a) $f(x) = -\frac{2}{3}(x+1)^2 + 4$
- $f(x) = 2x^2$

c) $f(x) = 4(x-2)^2$

d) $f(x) = \frac{1}{2}x^2 - 1$

Page 99

A parabola with vertex V(3, 16) has a *y*-intercept equal to 7. What is the *y*-coordinate of the point A on the parabola whose *x*-coordinate is 5?

 $y = -(x-3)^2 + 16$; A(5, 12). The y-coordinate of point A is 12.

- A parabola with vertex V(3, 8) passes through the point A(6, -10). What are the points on this parabola whose y-coordinates are equal to 6? $y = -2(x 3)^2 + 8$; $P_1(2, 6)$ and $P_2(4, 6)$
- What are the zeros of the parabola whose vertex is V(-1, 12) and passes through the point A(2, -15)?

 $y = -3(x + 1)^2 + 12$. The zeros are -3 and 1.

25. A parabola with vertex V(6, 10) passes through the point P(10, 6). What is the initial value of this function?

 $f(x) = -\frac{1}{4}(x-6)^2 + 10$; f(0) = 1. The initial value is equal to 1.

26. During a competition, a diver enters the water 2 seconds after jumping from the diving board and reaches a maximum depth of 9 m. The portion of the parabola on the right represents the diver's trajectory. If the diver remains underwater for 6 seconds, determine the height of the diving board.

$$f(x) = (x - 5)^2 - 9$$
; $f(0) = 16$

The diving board is at a height of 16 m.

At its purchase, a share is worth \$6. We observe that the function f, which gives the value y of the share as a function of the time x in months since its purchase, is a quadratic function. The share reaches a maximum value of \$8 six months after its purchase. What is the value of this share 9 months after its purchase?

 $f(x) = \frac{-1}{18}(x-6)^2 + 8$; f(9) = 7.5. The share is worth \$7.50.

We have represented on the right the trajectory of two fireworks launched at the same time.

The rule $h = -2(t - 4)^2 + 100$ gives the height h, in metres, as a function of the elapsed time, in seconds, since they were launched. Knowing that firework A explodes at a height of 92 m and that firework B explodes 1 second later, determine at what height firework B explodes at.

Firework A explodes 6 seconds after its launch.

Firework B explodes 7 seconds after its launch at a height of 82 m.

